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We present the Bloch modal analysis of photonic crystal 
coupled resonator optical waveguide (CROW) based on 
the local Fourier modal method (LFMM). The objective 
of this analysis is to extract the dispersion relation and 
analyze optical Bloch eigenmodes of the structure. The 
evolution of each Bloch eigenmode with varying fre-

quency can be visualized with the proposed LFMM. The 
recently proposed CROW structure of NTT Basic Re-
search Laboratory group with missing center holes and 
perturbed lateral shift of holes near the center is taken as 
the exemplary CROW structure. 
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1 Introduction Photonic crystal is an optical structure 
with photonic band structure formed by periodic refractive 
index distribution [1]. The solution to the Maxwell’s equa-
tion in such a periodic structure is known to be composed 
of linear superposition of Bloch eigenmodes with a periodic 
wave envelope function and the Bloch phase term. Depend-
ing on the geometry of the photonic crystal, the Bloch wave 
number can be purely imaginary, indicating that light 
propagating through the photonic crystal feels it as opaque. 
This is referred to as the photonic bandgap. There has been 
considerable research on fundamental properties and practi-
cal applications based on the photonic crystal [2, 3]. 

By introducing various types of defect in the photonic 
crystal, a range of optical devices can be developed [2, 3]. 
It is well established that a row of missing holes or rods in 
photonic crystal shows the function of unprecedented ef-
fective wave-guiding. Since guiding mechanism of this 
waveguide results from the photonic bandgap, rather than 
the total internal reflection, it possess various interesting 
features such as low bending loss and small modal size. 
Optical resonators are also of interest due to its potential 
applications such as optical buffer and memory [4–6]. 
Photonic crystals with local defect result in the photonic 

crystal resonator [5, 6]. A dot or a cube of missing holes or 
rods can be used to trap light inside them. The small modal 
size and high quality (Q) factor of photonic crystal resona-
tors have attracted lots of interest. Another method to form 
a photonic crystal resonator is to invoke small perturbation 
in lattice structures of the core of the photonic crystal 
waveguide [7]. Due to the broken symmetry of the lattice 
structure, there arises reflection of light propagating 
through the photonic crystal waveguide. Multiple reflec-
tions originating from periodic perturbations along the core 
give rise to another type of photonic crystal resonator. In 
addition, if the period of the cascaded structure photonic 
crystal resonators is large enough to partially isolate the 
overlap of wave function of the resonance mode and short 
enough to allow for coupling between neighbouring reso-
nators, light can propagate through such a cascaded resona-
tors, just like hopping. This is referred to as the coupled 
resonator optical waveguide (CROW) [7]. Considerable re-
search has been devoted to the physical characteristics and 
the implement method of various kinds of CROWs [6, 7]. 

In order to analyze and design aforementioned 
photonic crystal-based optical devices, it is necessary to 
make use of an efficient computation algorithm. There are 
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a number of numerical methods used in electromagnetics, 
such as the finite-difference time domain (FDTD) [8] or 
the finite element method (FEM) [9]. Since those numeri-
cal methods solve the Maxwell’s equations in the real 
space domain, the memory space required to compute 
properties of photonic crystal-based optical devices is pro-
portional to the size of them. However, the local Fourier 
modal method (LFMM) represents both the electromag-
netic fields and the geometry in the spatial frequency do-
main [10, 11]. Consequently, the required memory space 
for several periods of the photonic crystal-based optical 
devices is much less compared to that in the FDTD or 
FEM. In particular, the overall response of CROWs can be 
calculated with the LFMM based S-matrix method and a 
simple algebraic relationship called the Redheffer star 
product. In this paper, we examine the slow light behaviour 
in the two dimensional CROW configuration by using the 
LFMM. The dispersion relation and corresponding field 
distributions will also be provided. 

 2 Theory Let us consider a multidimensional periodic 
structure with periods along the x, y, and z direction as ,xΛ  

,yΛ  and ,zΛ  respectively. We choose a single computa-
tion supercell in a box with those periods. Optical re-
sponses observed from the outside of this supercell can be 
represented via the layer S-matrix, shown in Fig. 1. The 
elements of the matrix are given as ,T  ,R  ,R  and ,T  
which correspond to the transmission and reflection opera-
tors under the left-to-right and right-to-left directional 
characterization, respectively [10, 11]. 

 
Figure 1 (Color online) (a) Layer S-matrix and Bloch eigen-
mode with the eigenvalue ( ),0exp z zjkβ = Λ . (b) Interconnection of 
two single blocks via the Redheffer star product. 

Once the layer S-matrix in a single computation cell is 
obtained, the layer S-matrix of composite multilayer cells 
can be easily obtained by using the Redheffer star product 
as follows [10]. 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )11,2 1,1 1,1 2,2 1,1 2,2 1,1−
= + −R R T I R R R T ,             (1) 

( ) ( ) ( ) ( )( ) ( )11,2 2,2 1,1 2,2 1,1−
= −T T I R R T ,              (2) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )11,2 2,2 2,2 1,1 2,2 1,1 2,2−
= + −R R T I R R R T ,           (3) 

( ) ( ) ( ) ( )( ) ( )11,2 1,1 2,2 1,1 2,2−
= −T T I R R T ,                              (4) 

where superscript (1,1), (2,2), and (1,2) denote the left sin-
gle-block, the right single-block, and the multi-block, re-
spectively. The electric kE  and magnetic kH  fields are 
composed of the Bloch phase term and periodic envelop 
functions kE  and kH as follows [10].  

( ) ( ) ( ),0 ,0 ,0, , exp , ,x y zx y z j k x k y k z x y z⎡ ⎤= + +⎣ ⎦k kE E ,      (5) 

( ) ( ) ( ),0 ,0 ,0, , exp , ,x y zx y z j k x k y k z x y z⎡ ⎤= + +⎣ ⎦k kH H ,     (6) 

where ,0 ,xk  ,0 ,yk  and ,0zk  represent the x, y, and z-
components of the Bloch wave vector, respectively. For 
given eigenvalue ( ),0exp z zjkβ = Λ  the electromagnetic ei-
genmode can be expressed as ( )Tw w , where w  and w  are 
the Fourier spectra of the right-direction and the left-
direction propagating portions of the Bloch eigenmode. 
According to the Bloch theorem, the eigenmode experi-
ences only the Bloch phase shift of β  under translation of 

zz z z′→ = + Λ . This relation can be shown as the Bloch 
mode condition as follows [10]. 

( )

( )

( )

( )

1,2 1,2

1,2 1,2

w w
w w

β
⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠− −⎝ ⎠ ⎝ ⎠

T 0 I R

R I 0 T
.                     (7) 

By solving the eigenvalue problem given in Eq. (7), we 
can obtain the Bloch wave number and corresponding 
Bloch eigenmodes for any periodic structures. 

 3 Coupled resonator optical waveguide Figure 2 
shows a schematic diagram of the exemplary photonic 
crystal CROW composed of a triangular photonic crystal 
structure with a row of missing air holes along the center 
line [6]. The lattice constant a and the radius r of air holes 
are 420 nm and 180 nm, respectively. By introducing ta-
pered lateral shifts to the position of air holes near the 
waveguide center, the optical resonator is formed. The dis-
tance of lateral shifts are 30 nm, 20 nm, and 10 nm for the 
air holes of type A, B, and C, respectively. The refractive 
indexes of dielectric and air are 3.46 and 1.00, respectively. 

 
Figure 2 (Color online) Schematic diagram of photonic crystal 
coupled resonator optical waveguide 
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This kind of optical resonators are cascaded along the z-
direction with the period of 7a. It is assumed that there is 
no y-dependence. The transverse magnetic (TM) polarized 
light is incident from the left side. 

 

 

 
Figure 3 (Color online) (a) Dispersion relation of the photonic 
crystal CROW shown in Fig. 2. (b) and (c) Hy field distributions 
for the band of the solid blue and dotted red lines in (a), respec-
tively.  

The Bloch wave number β  is obtained by solving Eq. 
(7), which is dependent on the operating angular frequency 
ω .The relationship between β  and ω , i.e., the dispersion 
relation is plotted in Fig. 3(a). It is observed that there are 
two Bloch eigenmodes propagating along the CROW: one 
follows the solid blue (upper) line and the other the dotted 

red (bottom) line. The Hy field distribution for the upper 
and bottom modes are depicted in Figs. 3(b) and 3(c), re-
spectively. The abscissa z and the ordinate x are plotted in 
unit of the photonic crystal period a. In Fig. 3(b), we ob-
serve a highly confined optical mode. However, this is not 
related to the Bloch mode of slow light. We note the bot-
tom mode with low group velocity. Note that the field pro-
file extends to deep cladding region. The group index ob-
tained from the slope of the dispersion relation of this 
mode was calculated to be 11.4. This slow light phenome-
non is ascribed to the fact that weak coupling between 
neighbouring optical resonators is formed along the 
photonic crystal waveguide.  

 4 Conclusion The photonic crystal CROW with ex-
tremely slow light is investigated by adopting the LFMM 
algorithm. The Bloch modal analysis based on the S-matrix 
method and the LFMM is presented. The eigenvalue prob-
lem formulated by the LFMM yields the intrinsic Bloch 
wave number. Since the LFMM deals with the Maxwell’s 
equations in the spatial-frequency domain and exploits the 
periodicity of CROW structure efficiently, it provides a 
complete modal solution and does not suffer from the in-
crease of the required memory.  
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