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Abstract: We present that two distinct optical properties of light, the spin 

angular momentum (SAM) and the orbital angular momentum (OAM), can 

be coupled in the plasmonic vortex. If a plasmonic vortex lens (PVL) is 

illuminated by the helical vector beam (HVB) with the SAM and OAM, 

then those distinct angular momenta contribute to the generation of the 

plasmonic vortex together. The analytical model reveals that the total 

topological charge of the generated plasmonic vortex is given by a linear 

summation of those of the SAM and OAM, as well as the geometric charge 

of the PVL. The generation of the plasmonic vortex and the manipulation 

of the fractional topological charge are also presented. 
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1. Introduction 

Surface plasmons (SPs) are surface electromagnetic waves coupled with collective oscillation 

of electrons at metal-dielectric interfaces [1–3]. There has been considerable research 

devoted to the efficient excitation of SPs [4, 5], focusing SP [6, 7], plasmonic waveguides [8, 

9], and generation and manipulation of plasmonic hot spots [6, 7, 10–13]. Furthermore, 

formation of SP interference pattern on metal surface using metal grating and laser beam is 

also a hot issue in this field [14–17]. The diffractive SP pattern is influenced by laser beam 

profile and condition of metal-dielectric interface, such as shape of grating and refractive 

indexes of metal and dielectric. 

Considerable research has been devoted to fundamentals and applications for SP 

interference pattern based on the angular momenta of light [18–23]. Spin angular momentum 

(SAM) resides in the circularly polarized beam, whereas orbital angular momentum (OAM) 

comes from the spiral phase profile of beam around the axis of propagation. In our previous 

study, effect of laser beam with SAM and its application for plasmonic vortex lens (PVL) 

structure were presented [17]. Although there are a few researches about the coupling of the 

PVL and each of the angular momentum [24], discussion on the overall effect of the SAM, 

the OAM and the geometrical charge of the PVL to the plasmonic vortex has not yet been 

established. 

In this paper, the overall effect of the two angular momenta and the PVL structure on SP 

interference patterns is examined. Explanations on the helical vector beam (HVB) with two 

angular momenta are given. We propose a method to generate the plasmonic vortex with 

arbitrary topological charge, synthesized with momenta of HVB and geometrical effect of 

PVL. It is shown that effects of the SAM and the OAM of light can be coupled in the 

plasmonic vortex. 
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2. Helical vector beam 

The electromagnetic field component of an HVB has an azimuthal phase term of exp( ).il  

Here, l is the helix winding number of 2π cycles in phase around the circumference. Light 

with the helix winding number l is regarded as a flux of photons with the OAM .l  This 

azimuthal phase distribution can be obtained by the spiral phase plate or the spatial light 

modulator (SLM). Note that the positive and negative signs of l correspond to the direction of 

counter-clockwise and clockwise rotating electromagnetic fields, respectively. There are 

various kinds of optical beam with helicity such as the Laguerre-Gaussian beams and the 

Bessel beam [25]. 

The transverse field of light can be expressed as a superposition of two orthogonal 

electric fields. Depending on the amplitude and phase relationship between them, various 

polarization states can be obtained such as linearly, circularly, and elliptically polarized 

beams. Those states are achieved by using the half- or quarter-wave plates. Especially, the 

circularly polarized beam is considered to have the SAM of σ = ,s  where s =  + 1 for the 

right-handed circular polarization (RCP) and s = 1 for the left-handed circular polarization 

(LCP), respectively [15]. There are other nonconventional polarization states of light that 

have the electric field direction with spatial dependence, such as radially and azimuthally 

polarized beams [15]. Corrugated surface gratings or specific polarizer can be used to 

generate those polarization states of light [26]. The magnetic fields of radially and 

azimuthally polarized beams are determined to be orthogonal to the electric fields, so that the 

resultant magnetic fields are azimuthally and radially polarized, respectively. 

The two properties of light mentioned above can be combined together, leading to the 

HVB. In particular, the phase and polarization state can be independently controlled to have 

arbitrary combinations by cascading wave plates and spiral phase plates. Figure 1 represents 

electric field distributions at a fixed time for various combinations of polarization states and 

helix winding numbers. The top panel corresponds to the LCP, the middle the radial 

polarization, and the bottom the RCP. From the left panel, the helix winding number l varies 

from 1 to 2 with increment of 1. The abscissa and the ordinate denote the x and y 

coordinates with arbitrary unit, respectively. In addition to the polarization factor, the 

azimuthal phase term of exp( )il  is multiplied as well as the radial term of Jj(ρ), where Jj 

and ρ are the jth-order Bessel function with the first kind and the radial coordinate (ρ = (x
2
 + 

y
2
)

1/2
). Even though the polarization is different for each panel, they look quite similar in 

some cases. For example, the LCP with l = 1 (Fig. 1(c)), the radial polarization with l = 0 

(Fig. 1(f)), and the RCP with l = 1 (Fig. 1(i)) look similar at a fixed time. However, the field 

distributions with time development show definitely unique patterns. We thus present a 

movie clip for Fig. 1 that clearly shows the electric field distribution with varying time. In the 

movie clip, the handedness symmetry is observed for two combinations: the LCP with l = 1 

(Fig. 1(c)) and the RCP with l = 1 (Fig. 1(i)), and the LCP with l = 1 (Fig. 1(a)) and the 

RCP with l = 1 (Fig. 1(k)). In addition, it will be shown below that there are such 

combinations that result in the same topological charges due to coupling of the spin and 

angular momenta in the PVL. From these observations, an important remark can be made that 

the polarization states and helix winding number of phase can be separately manipulated so 

that we obtain any arbitrary combination of SAM and OAM. 

#164542 - $15.00 USD Received 12 Mar 2012; revised 7 Apr 2012; accepted 10 Apr 2012; published 18 Apr 2012
(C) 2012 OSA 23 April 2012 / Vol. 20,  No. 9 / OPTICS EXPRESS  10085



  

(a) L.C.P. with l = -1 (b) L.C.P. with l = 0 (c) L.C.P. with l = 1 (d) L.C.P. with l = 2

(e) Radial with l = -1 (f) Radial with l = 0 (g) Radial with l = 1 (h) Radial with l = 2

(i) R.C.P. with l = -1 (j) R.C.P. with l = 0 (k) R.C.P. with l = 1 (l) R.C.P. with l = 2

 

Fig. 1. Electric field distributions at a fixed time for various combinations of polarization 

states and helix winding numbers (Top panel: the LCP, middle panel: the radial polarization, 

bottom panel: the RCP). The helix winding number l varies from 1 to 2 with increment of 1 
(Media 1). 

3. SP excitation at metal slit 

Now let us discuss about the excitation mechanism of SPs based on the subwavelength metal 

slit. When the slit is illuminated by light from one side of metal, light passing through the slit 

excites SP wave on the other side. We note that the normal incidence of light induces the 

equal phase distribution of electron oscillations across the slit and thus the propagation 

direction of SPs generated by slit is always perpendicular to the slit. The electric field 

component normal to the slit contributes to the longitudinal oscillation of electrons. 

Consequently, the magnitude of excited SP becomes the maximum when the polarization of 

incident light has the electric field perpendicular to the slit. 

We illustrate in Fig. 2 three cases of SP excitation at a slit with the back-side illumination. 

Figure 2(a) shows the case that the polarization of illuminating light is perpendicular to the 

slit. In this case, the direction of polarization is the same as that of direction of SPs 

propagation. Therefore, the electric field thoroughly contributes to SP excitation. Second case 

is shown in Fig. 2(b), in which the direction of the polarization does not coincide with 

direction of SPs propagation, having a nonzero angle. When the polarization has such 

nonzero angle, energy of electric field cannot thoroughly contribute to SP excitation. Rather 

the projection of electric field direction upon SP propagation direction can excite SPs. The 

third case is that the slit is illuminated by HVB, as shown in Fig. 2(c). In contrast to the 

previous two cases, the HVB exhibits time-varying and spatially-dependent polarization 

direction. As a result, the angle between directions of the polarization and SP propagation 

varies along the slit. 
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Fig. 2. Three cases of SP excitation at a slit (thick black line) with the backside illumination. 

The laser with the propagation wave vector k coming out of the paper illuminates bottom of 

slit and excites SPs on front-slide of slit. (a) The polarization of illuminating light is 
perpendicular to the slit. (b) The direction of the polarization having a nonzero angle to the 

direction of SPs propagation. (c) The slit is illuminated by the HVB. 

We advance our analogy to a more complicated case where the slit is not a single straight 

line anymore but has a complex pattern. In particular, the PVL under illumination of the 

HVB is considered. The PVL is composed of multiple spiral slits to form spiral phase 

retardation of SPs propagating from the slits to the center of the geometry. The phase 

retardation is controlled by the distance from the center of the PVL to the slits. The PVL 

forms plasmonic vortex patterns that have co-centric circles with centers at the center of the 

geometry. The nearest circle pattern from the center is called primary ring [20]. The 

geometry of the PVL with spiral slits can be described in a simple algebraic form. The 

distance r from the center of the PVL to the slit with the azimuthal angle   is given by 

( ) / (2 ).SPr a m     Here, a is the inner radius of the PVL, m is the geometrical charge of 

the PVL, and λSP is the effective wavelength of SPs. According to this equation, the distance 

from slit to the center is proportional to the value of azimuthal angle .  Since the energy of 

SPs decays as SPs propagate, SP propagating from slits at large azimuthal angle experiences 

large energy decay and the uniformity of SP energy at the center deteriorates. In order to 

avoid this unnecessary degradation, the equation above can be modified to 

mod( ,2 ) / (2 ),SPr a m      where the notation mod(x, y) represents the remainder of the 

division of x by y. The PVL slit pattern based on the modified equation has m partial slit 

segments and the distance between the center of geometry and slits is in a range from a to (a 

+ λSP), providing a moderate uniformity of SP energy. 

When the PVL slit pattern is illuminated by the HVB from the back side, the SPs excited 

at the metal slit propagate toward the center of the PVL and generate the SP vortex. The 

properties of the SP vortex are governed by the total topological charge. In order to 

understand how the total topological charge is determined, it is necessary to examine the 

phase relationship in the PVL. Figure 3 presents the phase diagram of SPs excited at the PVL 

slits for various cases. The phase of SPs is highly dependent on the relationship between the 

direction of the instantaneous electric field and the direction of infinitesimal metal slit for the 

PVL. Throughout this paper, we define the relative phase   of the excited SPs as zero or an 

integer multiple of 2π when the amplitude 
SPA  of the in-plane electric field E|| of incident 

light toward the center of the PVL reaches its maximum ( SPA  ). Here 

 || ||
ˆ /SPA     Ε r Ε   and cos sin .  r x y  Fig. 3(a) shows the phase diagram for the 

radial polarization with l = 0. For the initial state with ωt = 0, the in-plane electric field heads 

toward the center of the PVL. The resultant phase is 0,   which is denoted by the red 

arrows. As time evolves, the phase decreases and the phase becomes 3 / 2,   (or 

/ 2   ), which is represented by the yellow arrows. The next level (ωt = π) exhibits the 
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in-plane electric field directed outward of the PVL and the resultant phase is    (the blue 

arrows). The final phase with ωt = 3π/2 gives rise to / 2.   Note that all the phases Ω are 

the same along the circle in this case. In Figs. 3(b)-3(d), we show more complicated cases. If 

there is a phase retardation coming from the helical winding (l = 1, Fig. 3(b)), then the SPs 

excited at the slit also carry the phase retardation proportional to exp( ).i  If the PVL is 

illuminated by the RCP without the helical phase retardation (Fig. 3(c)), the initial phase of 

SPs excited at the slit depends on the azimuthal phase. This is because the angle between the 

directions of the slit and the in-plane electric field differs along the azimuthal phase of the slit 

position. Figure 3(d) illustrates the PVL with m = 1 illuminated by the full-symmetric HVB 

with the radial polarization and no helical phase. Note that the initial phases at the slit are the 

same. In this case, however, the distance from the center of the PVL to the slit is linearly 

proportional to the azimuthal angle of the slit. Therefore, another type of phase retardation 

occurs: the propagation phase retardation. This relation is represented by the arrows between 

the PVL slit and the hypothetical circle (denoted by dashed line). Note that the number of 

arrows is dependent on the azimuthal angle. The resultant phase distribution along the dashed 

circle exhibits the same phase distribution as those of the case in Figs. 3(b) and 3(c). From 

discussion above based on the phase diagram, it can be inferred that the phase distribution of 

the SPs inside the PVL is affected by three factors: the helical phase of the HVB, the 

polarization state, and the geometrical charge of the PVL. 
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Fig. 3. Phase diagram of SPs generated at the PVL for four cases: (a) (l, m, s) = (0, 0, 0), (b) (l, 

m, s) = (1, 0, 0), (c) (l, m, s) = (0, 0, 1), and (d) (l, m, s) = (0, 1, 0). The most left panel 
corresponds to the phase of ωt = 0. As time evolves, each phase decreases since wave 

functions have the time-dependence of exp(-iωt). The most right panel exhibits the phase of 

ωt = 3π/2. 

The aforementioned property can be expressed in a simple algebraic equation. When the 

HVB with azimuthal phase term exp( )il  illuminates the PVL, the phase on the slit varies 

according to the position on the PVL. The value of topological charge can be either increased 
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or decreased by proper helical phase. Here phase term of exp( )il  shares the same positive 

direction as that of geometrical charge of the PVL. The topological charge j by the PVL and 

the HVB is given by j = l + m. In addition, this can be extended to take the effect of 

polarization status into account, i.e., the total topological charge j is given by 

 .j l m s    (1) 

One may be inclined to ask the values of spin parameter s for the radial and azimuthal 

polarizations. In the PVL structure, the radially polarized HVB excites SPs as seen for the 

linear polarization perpendicular to slit at each point. s of the radial polarization is 0 as can be 

observed with simulation results in Section 4. 

4. Numerical simulation 

The aforementioned hypothesis is verified by using full-vectorial and three-dimensional 

rigorous coupled-wave analysis (RCWA) [27]. In the simulation it is assumed that the 

experimental setup is as shown in Fig. 4(a). The PVL is inscribed on the gold layer. Figure 

4(b) shows the schematic of the PVL whose m is 1. The wavelength of laser is 660 nm and 

the corresponding wavelength of SPs is 629 nm. The slit width is 250 nm, thickness of gold 

layer is 300 nm, and inner radius, a, is 4 µm. The laser beam is assumed to be modulated by 

the phase SLM. When the modulated laser beam passing through a quarter wave plate or a 

radial polarizer illuminates the PVL from the backside, SPs are excited at the slit and 

propagate toward the center of the geometry. The simulation is carried out with altering three 

variables: the variable for geometrical effect of the PVL m, the polarization effect s, and the 

helix winding number of azimuthal phase term l. The key factor governing the properties of 

the plasmonic vortex is the topological charge. We can extract the topological charge by 

measuring the primary ring size of the generated plasmonic vortex [17]. -5 0 5

-5

0

5

SLM
Laser

Mirror

PVL

HWP or 

radial 

polarizer

4 μm

629 nm

λSP

Slit width : 250 nm

Thickness : 300 nm
(a) (b)

 

Fig. 4. (a) Hypothetical experimental setup. The PVL is inscribed on the gold layer. The 
wavelength of laser is 660 nm and the corresponding wavelength of SPs is 629 nm. (b) The 

schematic of spiral slit (m = 1) and design parameters of the PVL are shown. 

Figure 5 shows the simulation result with various HVBs with the fixed geometrical 

charge (m = 1) which is shown in Fig. 4(b). In this figure, the top panel corresponds to the 

LCP (s = 1), the middle to the radial polarization (s = 0), and the bottom to the RCP (s =  + 

1). From the left panel, helix winding number l varies from 1 to 2 with increment of one. 

For the sake of clear comparison, the arrangement of panels in Fig. 5 is the same as that in 

Fig. 1. As shown in Fig. 5, for the PVLs with the topological charge of 2, such as (l, m, s) = 

(1, 1, 0), (0, 1, 1), and (2, 1, 1), the primary ring sizes of the plasmonic vortices are the 

same. Other PVL group with the same topological charge exhibited the same vortex radius as 

expected. 
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Figure 6 shows the geometric effect of PVL. While the polarization parameter s and the 

helix winding number l are fixed, the geometric effect m of the PVL is varied. It turns out 

that the change of the primary ring sizes of the plasmonic vortex also depends on the 

variation in geometric charge of PVL as shown in Fig. 6(a) with (l, m, s) = (0, 1, 0) and Fig. 

6(b) with (l, m, s) = (0, 3, 0). In this case the total vortex charges are different from each 

other, resulting in the different sizes of the plasmonic vortices. However, even if the sum of 

the polarization effect and the helix winding number is different, vortex radii can be the same 

when PVLs are appropriately used as shown in Fig. 6(c) with (l, m, s) = (1, 3, 1). We note 

that the primary ring sizes of the plasmonic vortices in Figs. 6(a) and 6(c) are the same. This 

is because the total vortex charges of those configurations are the same (j = 1). 
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Fig. 5. Simulation result with various HVBs for a fixed geometrical charge (m = 1, which is 

shown in Fig. 4(b)). For the sake of clear comparison, the arrangement of panels is the same as 

that in Fig. 1. 
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Fig. 6. Geometric effect of PVL. (a) (l, m, s) = (0, 1, 0), (b) (l, m, s) = (0, 3, 0), (c) (l, m, s) = 

(1, 3, 1). 

The quantitative analysis of the result is as below. Point sources QSRC are aligned along 

the circle with the radius b and the angle .  They are assumed to have the phase distribution 

function ( )g   which implies overall effects of the geometric, polarization, and azimuthal 

phases. The SPs propagate from a point source with the SP propagation constant kSP. When 
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an observation point is represented by P(r, φ) inside the PVL, the wave function f(r, φ) at P(r, 

φ) is given by 

 
2

0
( , ) ( )exp[ | ( , ) ( , ) |] .SP SRCf r g jk P r Q b d



       (2) 

By using Taylor’s expansion and the integral form of the Bessel function of the first kind, we 

obtain approximation equation, 

 ( , ) 2 ( )exp( )exp[ ( / 2)],j SP SPf r J k r ik b ij      (3) 

where j = l + m + s. The quantitative plasmonic vortex pattern is given with intensity of 

electrical field, |f(r, φ)|. Therefore, the primary ring size is given with solution of the Bessel 

function of the first kind. 

Figure 7 shows the radius of vortex as a function of the azimuthal phase term l. Each 

figure displays different geometric effect, such as m = 1 in Fig. 7(a) and m = 0 in Fig. 7(b). 

The blue dashed, green dotted, and red solid lines with diamond, cross, and circle markers 

denote results of the RCP, the radial polarization, and the LCP, respectively. The left vertical 

axis of ordinates displays radius of vortex and the right vertical axis, solution of Bessel 

function of the first kind. As expected, the result shows the radii of vortices are identical 

when the PVLs have same topological charge j, which is the sum of geometrical charge m, 

polarization effect s, and azimuthal phase term l. Moreover, this figure shows that the 

primary ring sizes of simulation result are almost identical to solution of the Bessel function 

of the first kind. 
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Fig. 7. Radius of vortex as a function of azimuthal phase term l. Each figure displays different 

geometric effect, (a) m = 1, (b) m = 0, (c) m = 1, (d) m = 2. The blue dashed, green dotted, 

and red solid lines with diamond, cross, and circle markers denote results of the RCP, the 
radial polarization, and the LCP, respectively. The black dashed lines denote solution of the 

Bessel function of the first kind. 
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When the parameters l, m and s are given, we can estimate the primary ring size. On the 

contrary, even though if we know the primary ring size of vortex, it is difficult to individually 

estimate the parameter l, m and s. The geometrical charge m can be easily obtained by using 

microscope. When l is 0, the method to find polarization of illuminated laser using PVL 

whose m is 1 is reported [28]. In case l is non-zero, however, it is difficult to distinguish l and 

s from l + s because l and s equally contribute to deciding the primary ring size. 

Here, one may be inclined to ask the maximum primary ring size that can be excited by 

the PVL. If the primary ring size exceeds the diameter of the PVL, then the SP vortex field 

inside the PVL vanishes. Thus it appears that the topological charge in practical applications 

should be limited so that the primary ring appears inside the PVL with a finite diameter. In 

order to obtain higher orbital angular momentum of vortex, we can increase both the 

diameter of a PVL and the topological charge j. However, the propagation loss of the SP 

wave becomes dominant for a PVL with a large diameter [6]. Therefore it seems that the 

calculation of an exact maximum topological charge in the general PVL geometry is not 

possible. 

5. Fractional plasmonic vortex 

So far we have only considered the case in which all parameters j, l, m, and s are the integers. 

A question for the non-integer (or fractional) cases naturally arises. This section covers the 

case when those parameters have non-integer values and what would happen in that case. We 

also examine if the superposition rule (j = l + m + s) is still valid in the non-integer cases. 

Non-integer l and m arise when the wavelength of the laser beam does not match that for 

the designed optical system. A spiral phase plate or an SLM induces a certain amount of 

phase delay and the amount of the modulated phase is intrinsically dependent on the 

wavelength of light. The parameters l and m are associated with the winding number of phase 

around the center axis, and thus they are integers when the modulated phase is an integer 

multiple of 2π. If the wavelength of incident light is different from the wavelength designed 

for the optical device, then the resultant amount of the modulated phase is not 2π anymore; it 

could go beyond or under 2π. For example, if the laser beam with the 600 nm wavelength 

illuminates the spiral phase plate or an SLM that induces 2π phase delay (l = 1) for the 660 

nm, then the phase modulation would exceed 2π and the resultant helix winding number 

would be greater than one ( 1.1l  ). Likewise, the phase delay by the PVL is also dependent 

on the operating wavelength. If the PVL designed as 660 / (2 )r a      with the SP 

wavelength (λ660) for free space wavelength of 660 nm (m = 1) is illuminated by a laser beam 

with a different wavelength of 600 nm, then the SP wave feels the distance λ660 more than 2π, 

which leads to a non-integer m (1 < m < 2). 

In order to examine the effect of fractional l or m in the plasmonic vortex, we carried out 

numerical simulations. Let us first consider cases where either l or m is non-integer. If the 

helix winding number l is not an integer, the phase discontinuities are generated by the HVB 

along the axis and they cause a singular line linking the discontinuities in free space [29, 30]. 

As noted earlier, the plasmonic vortex pattern is superposition of SPs propagating in the 

PVL, and the phase of the SP wave is affected by the illuminating light phase. Consequently, 

those discontinuities also affect the vortex pattern and generate a singular line in the 

plasmonic vortex pattern. In the same manner as the fractional l, the PVL with fractional m 

generates a singular line. Recall that the PVL is designed by using equation 

mod( ,2 ) / (2 ).SPr a m      Because of different optical path lengths between   = 0 and 

  = 2π, the PVL with fractional m thus makes discontinuity along x-axis. This discontinuity 

makes a singular line and breaks the plasmonic vortex pattern as shown in Fig. 8(a) with (l, 

m, s) = (0, 1.7, 0). In order to explain the effect of fractional l and m, phase profiles inside of 

vortex pattern are displayed in Figs. 8(c)-8(f). The phase profile is obtained along the circle 

whose center is coincident with center of vortex pattern as shown in Fig. 8(b), which 
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represents the phase of surface plasmon at the center of PVL. Figures 8(c) and 8(d) show the 

phase profiles in vortex patterns with (l, m, s) = (0, 1.7, 0) and (l, m, s) = (1.3, 0, 0), 

respectively. They show that the phase varies nonlinearly when m and l have fractional 

values. 
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Fig. 8. Phase discontinuity breaks the plasmonic vortex pattern as shown in (a) with (l, m, s) = 

(0, 1.7, 0). The phase of surface plasmon at the center of PVL is represented in (b) with (l, m, 

s) = (0, 1.7, 0). The phase profile is obtained along the white circle and shown in (c) (l, m, s) = 

(0, 1.7, 0), (d) (l, m, s) = (1.3, 0, 0), (e) (l, m, s) = (1.3, 1.7, 0), and (f) (l, m, s) = (2, 0, 1). 

When j is fractional, the phase varies nonlinearly as shown in (c) and (d). When j is an integer, 

the phase varies linearly as shown in (e) and (f). This figure shows superposition property, j = 
l + m + s. 

In the previous section, it was shown that the vortex topology j is determined by sum of l, 

m and s when each value is integer (j = l + m + s) and this property originates from the 

superposition of the phase profile. It is not trivial whether the aforementioned superposition 

rule is still valid in the non-integer case. To examine this issue, we carried out simulations in 
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which l and m are both non-integers whereas their sum l + m is an integer. Figure 8(e) shows 

the phase profile in vortex pattern with (l, m, s) = (1.3, 1.7, 0). Note that this can be regarded 

as a superposition of (l, m, s) = (0, 1.7, 0) (Fig. 8(c)) and (l, m, s) = (1.3, 0, 0) (Fig. 8(d)). The 

topological charge j of Fig. 8(e) is obtained as 3. It is noteworthy that its phase profile is the 

same as that of (l, m, s) = (2, 0, 1) (Fig. 8(f)), whose topological charge j is 3. 

So far we have covered the fractional parameters only for l and m. One may be inclined to 

ask about the effect of the fractional spin parameter s. By using the spin operator, the spin of 

the polarization is represented as s = sin(2θ)sin(φy-x), where the angle θ describes the angle 

between the amplitudes of the electric field components in the x and y directions, and φy-x is 

the relative phase difference of the electric field components in the x and y directions. In the 

case of the RCP, which is represented by R , θ is π/4, φy-x is π/2, and s = 1. For the x-

directional linear polarization ( x ), θ is 0 and s = 0. In this equation, s is a real number 

between 1 and 1 when light has an elliptical polarization. Although the HVB has a 

fractional spin parameter s, light with a fractional s is unsuitable for PVL system. Because an 

elliptically polarized beam has different amplitudes between x and y directions, the intensity 

of excited SP waves is different with the position. Like the linearly polarized beam, the 

elliptically polarized HVB breaks uniformity of the SPs and it makes the asymmetric 

plasmonic vortex pattern. The radially polarized beam is represented by 
1/2[exp( ) exp( ) ] / 2 ,Radialp j R j L     where L  stands for the LCP and   is the 

azimuthal angle [17, 31]. This polarization is composed of the linear polarizations whose 

vector directions are toward the center of the beam. By using the spin operator, s of radial 

polarization is obtained as 0. Because the radially polarized beam excites the SP waves 

uniformly, it can be used in PVL system. Consequently, spin parameter s is one of only 1, 0 

and 1 in the PVL system, and superposition property of PVL topology j = l + m + s is 

satisfied at real number l, m and s = 1, 0, 1. 

6. Conclusion 

In conclusion, we proposed and analyzed the model for generating and manipulating a 

plasmonic vortex with PVL and HVB. The overall effects of spin polarization s, helix 

winding number l and the geometric charge of PVL m are explained. s and l are associated 

with the spin angular momentum and the orbital angular momentum, respectively. The 

topological charge j in the plasmonic vortex is given by the superposition rule (j = l + m + s), 

where l and m are given by real numbers and s is given by one of 1, 0, 1. It is shown that the 

quantitative primary ring size of vortex pattern is one of the solutions of the Bessel function 

of the first kind and the primary ring sizes of simulation result coincide well with the 

solutions. We believe that our finding can pave a novel way to the generation and 

manipulation of plasmonic hot spots and vortices. 
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