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Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In
the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retro-
reflection corner cube is developed, and its structural error extraction is formulated as a nonlinear op-
timization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear
optimization problem, and its detailed implementation is described. The proposed method of analysis
is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection

corner cubes.
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1. Introduction

Retroreflection is the well-known reflection phenom-
enon [1] that the optical rays radiated from an optical
source are reflected back to the optical source along
the inverse directions of the incident rays. For realiz-
ing retroreflection, specifically designed optical
devices, retroreflectors, are used. Several types of
retroreflectors and their optical properties have been
investigated [1-7]. The most popular type of retrore-
flector is the corner cube, schematically depicted in
Fig. 1(a). The conventional corner cube is composed
of four facets, including one incidence triangular
facet, AP;PyP;, and three total internal reflection
facets, M1P2P5, M2P3P5, and AP3P1P5. Point P4
is the foot of the perpendicular of P5 on the incidence
facet. If the dihedral angles between three reflection
facets are exactly 90°, the incident ray is reflected
consecutively at three reflection facets and returns
to the light source along the incidence direction as
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shown in Fig. 1(a). Retroreflection by a corner-cube
structure is used in many practical applications re-
quiring accurate retroreflection, such as positioning
and guidance systems [8-10], wavefront correction
[11], optical communications [12], and traffic control
signs [13-15]. In particular, the retroreflectors are
considered a key element of a new application,
head-mounted projective display, wherein great tech-
nology advancements have been made in recent
years [16-22].

Although the structural condition of the perfect
retroreflection corner cube is known [23], imperfect
fabrication of corner cubes is inevitable in practice.
In this paper, the structural imperfection means that
the apex point of the fabricated corner cube, Pj, de-
viates from the apex point Pj of the perfect corner
cube. It is well known that when a corner-cube struc-
ture has a structural error, the imperfect retroreflec-
tion corner cube will generate six-beam reflection
patterns as illustrated in Fig. 1(b). As the structural
error becomes bigger, the distances among the six re-
flection beams increase. Direct measurement of the
structural imperfection is not easy and often requires
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Fig. 1. (Color online) (a) Retroreflection by a perfect corner cube
and (b) retroreflection by an imperfect corner cube.

destruction, since corner cubes are fabricated on a
microscale and are formed as a sheet composed of
a periodic array of identical corner cubes. However,
the observable six-beam reflection pattern generated
from the imperfect corner cube is optically measur-
able data that can be used for nondestructively ana-
lyzing the structural imperfection of the corner cube.
Theoretically, two-beam and four-beam reflection
patterns can occur with imperfect corner cubes as
special cases of the six-beam reflection pattern. The
detailed analysis of this reflection pattern classifica-
tion is addressed in the main part of this paper.
Regarding the analysis of imperfect corner cubes,
we can pose a forward analysis problem and an
inverse analysis problem separately. The forward
analysis problem concerns the optical reflection char-
acteristics of a corner cube whose structure is known
a priori. Optical properties such as effective retrore-
flection area [23], reflection direction, and so on, are
interesting aspects with respect to the forward ana-
lysis problem. The inverse analysis problem concerns
the structural analysis of the corner cube itself,
whose structure is not known a priori. There little
literature on the inverse analysis of retroreflection
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corner cubes. In this paper, we deal with the inverse
analysis problem, where from measurable data, such
as optical reflection patterns and power, we analyze
the structure of the examined corner cube, such as
the position of the apex point Py.

In this paper, we describe a mathematical method
to inversely extract the position of the apex point, Pg,
of the examined imperfect retroreflection corner
cubes by using the reflection pattern data. In the ana-
lysis, the mathematical relationship between the
six-beam reflection pattern and the position of the
apex point of the imperfect corner cube is formulated
as six nonlinear algebraic equations. We set the struc-
tural error (%,y,2) of the apex point as the unknown
variables, and then the unknown variables (%, y, 2) ap-
pear in the nonlinear algebraic equations. As a result,
the inverse structural analysis of the imperfect retro-
reflection corner cubes is equivalent to obtaining the
solution (%,7,2) from the nonlinear algebraic equa-
tion. In general, nonlinear algebraic equations have
several solutions, and there is no general method to
solve the equations. Thus, numerical optimization
techniques are often employed to solve the nonlinear
algebraic equations. In this paper, the nonlinear con-
jugate gradient method (NCGM) is employed for sol-
ving the inverse structural analysis problem, and its
detailed implementation is described. Fortunately, it
is advantageous that the inverse analysis problem of
animperfect corner cube has a single solution, and the
convergence of the NCGM is confirmed.

This paper is organized as follows. In Section 2, the
geometrical optics model of single corner cube is de-
veloped. The mathematical relationship between the
corner-cube structural error and the reflection pat-
tern is derived with the geometrical optics model.
In Section 3, the NCGM for the structural analysis
of single corner cube is formulated, and numerical re-
sults are presented. In Section 4, concluding remarks
are provided.

2. Geometrical Optics Model of a Single Corner Cube

In this section, the geometrical optics model of single
corner cube is developed. Let a single corner cube
with a triangle incidence facet be in the Cartesian
coordinate system shown in Fig. 2. The corner cube
is composed of an incidence facet and three reflection
facets drawn by the pairs of three vertices, (P, Py,
P3)a (P53P1aP2)’ (P5,P2,P3)’ and (P5aP3,P1)’ which
are denoted Ty, T, Ty, and T3, respectively. It is as-
sumed that we can only observe the top view of the
corner cube using a microscope. Thus, by measuring
the lengths of observable edges, l15, /13, and 53, of the
fabricated corner cube, we can obtain the coordinates
of the vertices of the examined corner cubes,
Pl(x1>y170)a P2(x27y270)a and P3(.’X33,y370), which
are given, respectively, by

Py (xlayl) = (0’0)7 (13)

Py (x9,y2) = (l12,0), (1b)
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Fig. 2. Corner cube in the Cartesian coordinate system:
(a) side-view, (b) top-view.

(ag, by, co) = (ysh, (=x3 +x9) h,—x2y3 + ¥,
+ (xg —x3)y.) for Ty, (2b)

(a37b3303) = (—y3h,x3h,ycx3 _nyC) for T3' (20)
Let us define the reflection transform I'; ¢ = 1,2, 3)
representing the mathematical transform of an
incident ray vector, (k,,k,,k,), to the reflection ray
vector, (k,,k,,,k, ) by the reflection facet T';, with
the form (see Appendix B)

(kr,kar.yvkr,z)t = Fi(kxakyvkz)t’ (3)

In addition, let us consider the process of refraction
through the incidence facet T. If an optical ray with
the incidence angle of 8 and the azimuth angle of ¢ is
incident on the incidence facet of a corner cube, the
direction vector (k;,k;,,k;,) of the incident optical
ray is represented by

(ki,xak'

iy Ri>) = (cos¢ sin@,sin¢ sin@, —cos 0). (4a)

The refracted ray vector (k,, k,, k,) in a material with
a refractive index of n, is given, from Snell’s law, as

1
(ky Ry, k) = - (cosg{) siné,sin¢ sind, —/n? - (sin9)2>
= (cos¢'sinf,sin¢g’'sin @,-cos &),  (4b)

where ¢ and ¢’ are the refraction incidence angle and
the refraction azimuth angle, respectively. From

By +1,-13
Py (x3,3) = (712 211132 23,\/1%3—3%)

_ (1%2 + l%s - 133 \/(lm + o 4 113) (L2 — Lo + L13) (l1g + log = L13) (=112 + Lo + 113)) (1c)

2119 ’

2119

With only the top view of the corner cube, we cannot
directly obtain the edges, /14, l54, and l34. These edge
lengths are nonmeasurable data. Let the point
(%.,¥e,—h) be the coordinate of the apex point of
the perfect corner cube structure for a normal inci-
dence light wave (see Appendix A and [23]).

Let the structural error of the apex point of imper-
fect corner cube be denoted (%,7,2). Then the apex
point P5 of the imperfect structure is given by
Ps(x.,y.,—h) = (X, +%,5. +5,—(h +2)). According to
the equation of a plane with the normal vector
(a,b,c), ax + by + cz +d = 0, the normal vectors of
Ty, Ty, and T3, (a1,by,¢1), (ag,b3,c3), and
(as,bs,c3) are given, respectively, as

(alv b17cl> = (07 _x2h7 _nyc) for T17 (28.)

Eqgs. (4a) and (4b), we can define the nonlinear

refraction transformation I'y from (k;,,k; . k;,) to

(kyky, k,) and its inverse transform Fal, respectively,
as

(kxv ky> kz)t = FO(ki,xv ki,ya ki,z)t

1 t
] (TSR Y

(ki,x>kiyaki,z)t = Fal(kmkyvkz)t
t
- n(kky ~J1-n2(1- kg)) . (5b)
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As is well known, an imperfect corner cube shows a
six-beam reflection pattern [2]. If the apex point Pj
deviates from the perfect point, (X.,¥.,—h), the reflec-
tion rays are split into six rays, but in the perfect cor-
ner cube the six-ray reflection transforms become the
same form, and perfect retroreflection occurs. We can
count the six possible paths of rays traveling inside
the corner cube as () Ty > T, > Ty —> T — T,
(ll) To g Tl g T3 - T2 d To, (lll) TO - Tz -
Ty—>T3—>Ty, () To—>Ty—>T3—>T1—T,
(V) TO g T3 d T2 g T]_ d To, and (Vl) TO i T3 d
T, — Ty — Ty. The six ray traces are represented
by the following six transforms:

kr,x ki,x
k., | = r:irsr,rr, |

ri o +3t2%1%0 i,z (Ga)
fOI‘TO—)Tl—>T2—)T3—>T0,
kr,x ki,x
fOI‘TO—)Tl—>T3—)T2—>T0,
kr‘x ki.x
k:’i’ = r61F3F1r2r0 kzz (6c)
fOTTO—)T2—>T1—)T3—>TO7
er ki.x
fOTTO—)T2—>T3—)T1—>T07
kr,x ki.x
k:i, = F61F1F2F3F0 ki‘z (66)
fOI‘TO—)Tg—>T2—)T1—>T0,
er ki.x

forTg—>T3>T;—>Ty—>T,.

In Fig. 3, the retroreflection patterns of the corner
cube analyzed with the described geometrical optics
model is presented. In this simulation, a ray is nor-
mally incident on the incidence triangle facet of a
single corner cube. With the apex point of the corner
cube continuously varied along the spiral spatial
traces, the reflection patterns with six reflected rays
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are continuously recorded on a hemispherical
surface. In Figs. 3(a) and 3(c), the blue outlined
corner cube is the perfect corner cube structure
with  (ly9,013,193) = (240 ym, 240 ym, 240 ym) [see
Fig. 2(b)]. The spiral traces of the apex point,
P5(xX. +%,y. +3,—(h +2)), of the imperfect corner
cube with 2> 0 and Z < 0 are shown in Figs. 3(a)
and 3(c), respectively. In Figs. 3(b) and 3(d), the
traces of six distinguished reflection rays on the
hemispherical surface are plotted, where the rays
along the paths, () To—>T;>Ty—>T5—> T,
(11) TO e Tl e T3 e Tz e d To, (111) TO e Tz e d
Ty—>Ts—>Ty, @) Ty—>Ty—>T3—>T—>T,,
(V) TO d T3 i T2 e Tl el To, and (Vl) TO d T3 e d
T,— Ty —- T, are colored red, blue, black, pink,
green, and yellow, respectively.

From the theoretical point of view, one can see that
combinations of angular errors lead to four possibili-
ties: (1) one-beam reflection (perfect retroreflection),
(ii) six-beam reflection (as shown in Fig. 3), (iii) two-
beam reflection, and (iv) four-beam reflection. The
first and second cases are illustrated in Fig. 3. The
third and fourth cases are analyzed further in
Appendix C. Although retroreflection by an imperfect
corner cube can be classified into the above four
categories, the proposed mathematical method to in-
versely extract the positional error of the apex point
of an imperfect retroreflection corner cube is equally
applicable to all cases of two-, four-, and six-beam re-
flections, since two-beam and four-beam reflections
are just special cases of six-beam reflection, as is
proved in Appendix C.

The reflection transforms are the function of the un-
known structural error, (%,7,2). Hence, the reflection
transforms can be denoted I';(x,7,2) 0 = 1,2, 3). As is
shown in Fig. 3, for a specific structural error, a corre-
sponding six-beam reflection pattern on the hemi-
spherical surface is measured. Let us separately
denote a specific structural error and the unknown
structural error variables by (X*,y%,2%) and (%,5,2),
respectively. Then, we can interpret six reflection
transforms A; (=1,2,...,6) from the reflection
pattern, which take the form of combinatorial multi-
plication of three facet reflection transforms as

Al = 1“3(32*,37*75*)1“2(32*73'3*,5*)1’1(55*,37*,2*), (73)

Ay = Dok, J*, 2% ) L5 (X, y*, 2% )1 (X*,5%,2%),  (7b)

A3 = FS(JE*’&*ag*)rl(&:*v&*v2*)r2(£*7&*7£*)’ (70)

Ay =Ty (%, 9%, 2%) D3 (Xx, yx, 2% )T (X%, 5%, 2%),  (7d)

A5 = rl(5&*’5/*72*)r2(£*7§*72*)r3(55*75)*75*)7 (78)

Ag = Dok, 5%, 2% )01 (X, y*, 2% )Lg(Xx, %, 2%).  (Tf)
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Fig. 3. (Color online) (a) Trace of the apex point P5(Z > 0) of an imperfect corner cube; (b) traces of six distinguished reflection rays on the

hemispherical surface; (¢) a trace of the apex point P5(Z < 0) of an imperfect corner cube; (d) traces of six distinguished reflection rays on
the hemispherical surface.

The reflection transform data, A;, Ay, Az, Ay, A5, and sured data are arranged as
Ag, are optically measurable data for a specific
imperfect corner cube with the structural error

(X*,9%,2%). By measuring the continuous trace of kﬁlx) k§2x) k% -1 k% )

the reflection pattern with the incidence light dir- T, P 2 Rl ()

ections varying, we can measure the reflection trans- a @) (-1 o)

forms A; G =1,2,...,6). Once these data are obtained, kre krz .. krz krz

we can further proceed to extract the structural error 1) @) (M-1) 5 (M)

(%+,y*,2%) implicitly imbedded in the six reflection Riv Rix o Ry ki

transform data from the measured data. The first re- = AT kgl) kl@) kEM_l) kEM) . (8b)

flection transform of Eq. (6a) is slightly modified, from k(iv) k(éy) k(}‘y'[_l) k(}‘y@

Eq. (7a), as iz iz iz iz
k. k; . Becz%u'se the nonlinear refra}ction trapsform .FO is

To| kry | = AT, ki:y (8a) explicitly known, we can obtain A, by‘usmg the 1}near

k. k. least squares method [24,25]. According to the linear

least squares method, the solution of Eq. (8b), Ay, is
represented by
For the direction vectors of several incidence rays,

1) (1) .1 M) (M) 3 (M
(kE’x),kgky),kE’;),...,(kgﬂx),kgy%kg)z)), we can measure A, = RC{(CCH™, (8c)
the reflection ray vectors (kﬁ}ﬁ,kﬁ?j,k(r};), e

(k%%k%% k%) ) with M > 3. From Eq. (8a), the mea- where R and C are defined, respectively, by
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kY k2 M )

R=To| kry hyy ... hky | hky' |, (93)
kY k2 M M)
R S e Y

C=To| kY &2 .. &MY M (9b)
I S Sl S

By the optical measurement ofthe reflection patterns,
we can know all six reflection transforms, A;, Ay, As,
Ay, As, and Ag, for a specific structural error
(X+,5*,2%) with the structural error itself being
unknown. However, it should be noted that, in the
measurement, we have just six reflection transforms
without identifying the correspondence of each of the
six reflection transforms to its own ray path.

3. Structural Analysis of a Single Corner Cube by the
Nonlinear Conjugate Gradient Method

The heart of this paper is the inverse analysis of
extracting the structural error of the examined cor-
ner cube from the optically measurable data, A,
@=1,2,...,6). In this section, the numerical method
of structural error extraction from the optically mea-
surable data, A; G =1,2,...,6) is elucidated.

The first consideration in the inverse analysis pro-
blem is the number of combinatorial cases in the clas-
sification of the six measurable data. As stated in the
previous section, we have six reflection transforms
without identifying the correspondence of each of
the six reflection transforms to its own ray path.
Therefore, we have total possible combination num-
ber of 720 (= 6!) with respect to matching the mea-
sured data to the six ray traces of the examined
imperfect corner cube. Hence, the inevitable step
in the inverse structural analysis is that we have
to find the best-matched one among all possible
720 combination cases.

Let us consider the set of six retroreflection paths
parameterized by (£,7,2), given by {I'sI'sI'y, To'sTy,
I‘3I‘1F2, F1F3F2, F1F2F3, F2F1F3}. The error function
parameterized by (x,y,2), E(X,y,2), that measures
the amount of the error of the reflection characteris-
tics of the corner cube from that of the inspected
corner cube with the structural parameters
(X+,9*,2%) is defined by

E%,5,2) = |A,, —-T3lel|2 4 |A,, - Tol'sI |2

+ |A,, = TsTiTe|? + |A,, - T1T50)?

+ Ay, —T1Lel3 + [A,, — Tl 3%, (10a)
where the absolute value symbol |A|? is defined as
the sum of squared values of all elements of A as

AP =ai;, +ai, +ai; +a3; +a3, + a3

+ a3, + a3, + a3 (10b)
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and the index pair (ny,nq,ns,ny,ns, ng) indicates a
possible index pair among total 720 combinations.
Then we should separately inspect a total of 720 er-
ror functions and find the optimal variables (X,y,2)
minimizing the error function for each combination.
In the analysis stage, for example, the cases (n4,ny,
ng,ng,ns, nG) N (1a 2; 37 47 5a 6) and (nb Ng,Ng, Ny, N5,
ng) = (3,5,4,6,1,2) are inspected with the same pos-
sibility of 1/720, because we do not have a priori in-
formation on the matching of the measurable data,
Aq, Ay, Ag, Ay, A5, and Ag to respective retroreflection
paths. Hence, after obtaining the minimizing vari-
ables (%,y,2) of all 720 cases, we should select the
case showing the minimum-error function value
among 720 cases, and we can identify the value
(%,5,2) at this case with the approximate solution
to the true structural factor (xx,Jx*,2x).

The structural error extraction is formulated as a
nonlinear optimization problem for solving the mini-
mal condition of Eq. (10a). In this paper, the NCGM
is employed to solve the posed nonlinear optimiza-
tion problem, and its detailed formulation is devel-
oped. In the standard NCGM, minimization of the
objective function is performed by consecutive itera-
tive procedures [24]. The core in the NCGM is the
calculation of the gradient vector, VE(X,7,Z2), of the
objective function E(%,y,Z). The gradient vector
takes the form

VE(%,5,2)

= [0:E(,5,2),;E(X.5,2), 0:E(X,5,2)].

(11)
Before expressing the explicit form of Eq (11), let us

obtain the total derivative of E(&,7,5). The total
derivative, AE(X,y,2), is represented by the form

AE(%,9,2) = [[(Ay, —TsTol1)O(-2A(I3TeI))]l
+ [(An, - ToI'3I')O(-2A(IeI3I0))]]
+ [(An, =TI T2)O(-2A(T3T )]
+ [(An, —T1I302)O(-2A(T'3Iy))]
+ [(A,, - I1IeI3)O(-2A(ITLl))])
+ [(Ayg — o' I'3)O(-2A(IeI'1T3)),
(12a)

where AOB is the entry-by-entry product of A and B.
Here A and B are 3 x 3 matrices. Thus

a1 Q12 Qi3 by bz b3
AOB = | ag; ags agz | O by bos bog
a31 Q32 Qass bs1 bss b33
a11b11  aipbiz aizbis
= | ag1bar agebsy ag3bss |, (12b)
asibs;  assbsy  assbss

and [A] is the sum of all elements of A,



HA]] =Q11 T Q12 T Q13 + Qg1 + Qg2 + Qg3
(12¢)
+as; +ags +ass.

The elements of the gradient vector VE(X,y,2) are

obtained from the total derivative, Eq. (12a),
respectively, as
zE(x,5.2) = hm AE(x ¥,2)/ A%
= [[(Ay - '3l )O(-203(T3TI))]
+ [(Ag = Tol'3I' ) O(-20; (ToI'5I' )]
+ [(A3 = T30 I'y) O (=205 (I3 I'2))]
+ [(Aq —T1T3I2)O(-205 (T 3I2))]
[(A5 = T'1T2l3)O(-20;(T112I'3))l
+ [[(Ag = FoI'1I'3) O(—20(I'oT'1T3)),
(13a)

GE(X,5,2) = hm AE(x 9,2)/ Ay

= [[(A1—F3F2F1) (=205(I'32IM))]]
+ [(Ag = T3 )O(=205(ToT30))]
[(A3 - T3TTp)O(-205(T3I1I'y))]
[(Ag = T'1I'3T9)O(-205(I'1'3I2))]
+ [(A5 = T'1TI'3) O (-205(I'1 L))l
[(Ag = ToI'1T3)O(=205(Tol'I'3))]
(13b)
:E(X,5,2) = Al%r_l}l()AE(o’&,&,z”)/Az”
= [[(Ay = T3Lol)O(-20:(I'3TeI))]
+ [(Ag = Tol'sI'1) O (=205 (ToI'sT))]
[(A3 = T3TTy)O(=205 (I3 Ty))]
+ [(Ag = T1T'305)O(=20;(T'1 T3lg))]
[(A5 - I'1I'ol'3)O(~20;(I' Tol))]
[(Ag — ToI' I3)O(-205 (o1 I'3))],
(13c¢)
where the partial derivatives, 055 (FsToly),

0352 (Tol'3I'y), g5 (L3l Ly), 055 (F1lsTy), Oz5z)
(I';TeT3), and 95(5.5) 81‘21’11’3) are derived as

5Tl
(14a)

8 25 2) (F3F2F1) = ax(&g F3F2F1 + F38
+ T3l9055.5 1,

0355 (Tol3T1) = 0g(5.5 Fol '3’y + L0555 T3y

+ Tol30z55 1, (14b)
0355 (FsT'1Tg) = 0355 '3l Ty + F30555T1 e

+ F3rla£0775)112, (14C)
0355 (T1T'3lg) = 0z(5.5 13l + 105355 T3y

+ T F30z55 e, (14d)
0z(5.5) (F1Tel'3) = 055 5T102l's 4 T'105(5.5 F2l's

+T1Fe0z55 s, (14e)
0555 (Fel'1's) = 0355215 + Ta0z55T11s

+ ol 035,53 (14f)

The partial derivatives dg; 5 I'1, 9355’2, and 9555 T's
are detailed in Appendix ]_) In the standard NCGM,
the structural error (%,,,%,,Z,) can be obtained
through the convergence of an iteration procedure.
The structural error at the (m + 1)th iteration stage,
(Xrmt1,Yme1s2ma1), is updated from the structural er-
ror at the mth iteration stage, (X,,,9m,2n), through
the formula

(£m+1a§m+la2m+l) = (:”ema&magm) + 7 dp,
form=0,1,2,..., (15)
where 7,, and d,,, denote the step size and the search

direction vector, respectively, at the (m + 1)th itera-
tion stage. The search direction vector d,, is given by

dm = _VE(£m7&m72m) +ﬂm—1dm—1ﬁ (16>

where the Fletcher—Reeves formula [24] sets f,,_1 to

\VE & Ims 2m) |
lVE"(‘;‘\:rn—l7yﬁrvft—1»é:r)1—l)|2

ﬁm—l = (17)

The step size 1, is determined in order to minimize
the objective function E(X,,,¥,,,2,) with the aid of
the bracketing algorithm and the golden section
search algorithm [25]. In the analysis, the initial
value of the structural error (Xy,7¢,29) is set to
(0,0,0). From the structural point of view, the initial
point of the NCGM is the perfect corner cube.
Through the NCGM iteration procedure, the perfect
corner cube at the initial stage evolves to the imper-
fect corner cube.

We compare two examples of the structural analy-
sis of the imperfect corner cubes with different
structural errors. In Figs. 4 and 5 examples of

structural error extraction with the NCGM for the
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relatively large error (Xx,j*,2%)= (12um, 13 um,
10ym) and the relatively small error,
(X#,9%,2%) = (2um, 1.5 ym, 1 um), are presented, re-
spectively. In Fig. 4(a), the error function values at
the 100th iteration stage, E(X100,¥100,2100), for the
unsorted combination indices are plotted. The combi-
nation indexes, 1,2, 3,4, ...720 in Fig. 4(a) correspond
to the consecutive permutation pairs (nq,ng,ns,
Ny, Ns, nG) = (17 2> 37 41 57 6)5 (nla ng,ng, Ny, Ns, nG) =
(17 27 33 43 67 5)’ (nla ng,ng, Ny, Ns, nG) = (17 27 3; 57 4, 6),
(n17 ng,Nng, Ny, N5, nG) - (17 27 3a 57 67 4)7 ceey (n17 ng,ng,
ng,ns,ng) = (6,5,4,3,2,1), respectively. In Fig. 4(b),
the sorted error function values are plotted, where
the 720 cases are sorted according to the increasing
order of the value of E(X109,100,2100)- We can say
that the minimum first case, (n{,nq,ns, ny,n5,ng) =
(1,2,3,4,5,6), in the sorted result of Fig. 4(b) is
the solution of the optimization problem. In
Figs. 4(c)-4(e), the convergence curves of %,,, ¥,
and Z,, for the combination cases of (nq,ny,ns,ny,
n57n6) = (17273 4 5 6) (n17n27n3an4vn57n6) (5 4
6a27 173)’ and (nlan27n3,n4an5vn6) - (2 4 5 6 3 1)
that are indicated, respectively, by solid, dashed
and dotted curves are presented. The ﬁrst case of
(n1,nq,n3,ny,ns5,n6) = (1,2,3,4,5,6) shows the con-
vergence of (X100,5100,2100) to the structural error
(X#,9*,2%). The other two cases of (ni,ng,ns, ny,
n5vn6) = (574 6 2 1 3) and (nlan27n3vn4an57n’6)
(2,4,5,6,3,1) show the convergence of (X199,%100;
Z100) to the wrong values (-12.98um,-11.3 um,
-10.6 ym) and (-3.14 ym,-18.59 ym,—-5.46 ym), re-
spectively. In Fig. 4(f), the convergence curves of
EX,,9m,2,) for the combination cases of
(nlv ng,ng,ny,Ns, n’6) = (17 27 37 4; 57 6)’ (nlv ng,ng, Ny,
n57n6) - (57 4,6,2,1, 3)’ and (nla ng,ngz, Ny, n57n6) =
(2,4,5,6,3,1) that are also indicated, respectively,
by solid, dashed, and dotted curves are presented.
As shown in Fig. 4(f), the value of E(%,,,5,,,2,) of
the combination case of (ny,ng,ns, ny, ns ng) =
(1,2,3,4,5,6) goes to zero monotonically.

In Fig. 5, the structural analysis result of the im-
perfect corner cube with the structural error
(X#,5%,2%) = (2pum, 1.5 ym, 1 ym) is presented. Fig-
ure 5(a) shows the error function values at the
100th iteration stage, E(%100,5100,2100) for the un-
sorted combination indices. If the cases are sorted ac-
cording to the increasing order of the value of
E(%100,¥100,2100), Wwe can find the solution of the op-
timization problem in the minimum first case in the
plot as shown in Fig. 5(b), where the minimum first
case is (ny,ng,n3,ng,n5,n6) =(1,2,3,4,5 6) In
Figs. 5(c) 5(e), the convergence curves of Zm> Yo
and Z,, for the combination cases of (ny,ng,ns,
Ny, N5, n’G) = (17 27 37 4; 57 6)’ (nla ng,ng, Ny, Ns, n’G) =
(51 47 6’ 2? 17 3)7 and (n17 Ng,Ng, Ny, Ns, nG) = (2a 47 57 6,
3,1) are indicated, respectively, by solid, dashed,
and dotted curves. The first case of (nq,ns,ns,
ng,ns,ng) = (1,2,3,4,5,6) shows a good convergence
of (X100, y1oo,21oo) to the structural error (Xx,yx,2x).
The other two cases of (nq,ng,ng ny,ns ng) =
(5a 47 6a 27 17 3) and (n17 ng,Nng, Ny, N5, nﬁ) = (23 47 57 6a
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Fig. 4. (Color online) NCGM structure analysis result of an im-
perfect corner cube with (Xx,9x,2%) = (12um,13um,10ym):
(a) plot of the error function values at the 100th iteration stage,
E(%100,5100,2100), for the unsorted combination indices and (b) plot
of the error function values for the sorted combination indices.
Convergence curves for (¢) %X,, (d) J,, (&) 2,, and (0 E(%,,
YmsZm) for the combination cases of (ny,ng,ng,ny,ns, ng) =
(1,2,3,4,5,6), (ny,ng,n3,nyg,n5,n6) = (5,4,6,2,1,3), and (ny,n,,
ng,ny,ns,ng) = (2,4,5,6,3,1) are indicated, respectively, by solid,
dashed, and dotted curves.

Itcration number m

3,1) show the convergence of (X199,¥100,2100) tO
the wrong values (-2.27um,-1.4um,-1pym) and
(-1.069 um, -2 ym, —0.64 pm), respectively. In
Fig. 5(f), the convergence curves of E(%,,, 7,2, ) for
the combination cases of (nq{,ng,ns,ny,ns ng) =
(17273747576)’ (nlan27n37n47n57n6) = (57476727 173)7
and (ny,ng,n3,ny,ns,ng) = (2,4,5,6,3,1) are indi-
cated, respectively, by solid, dashed, and dotted
curves. As shown in Fig. 5(f), the value of E(%,,
Ym,2m) for the combination case of (n,ng,ns, ny,
ns,ng) = (1,2,3,4,5,6) goes to zero monotonically.

To summarize, we have successfully obtained the
stably converged solution (X190,¥100,2100) = (X%,
y*,2%), at the 100th iteration stage by comparing
all 720 NCGM convergence curves and choosing
the minimum-error case for imperfect corner
cubes with relatively large and small structural
errors.
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Fig. 5. (Color online) NCGM structure analysis result of an im-
perfect corner cube with (£x,§+,2%) = (2pm, 1.5 m,1um): (a) plot
of the error function values at the 100th iteration stage,
E(%100,5100,2100) for the unsorted combination indices and (b) plot
of the error function values for the sorted combination indices.
Convergence curves for (¢) X,, (d) J,, (&) 2,, and () E(X,,
Ym,2m) for the combination cases of (ny,ng,ns,ny,ns ng) =
(1,2,3,4,5,6), (ny,ny,n3,n4,n5,n6) = (5,4,6,2,1,3), and (ny,n,,
ng,ny,ns,ng) = (6,4,5,2,1,3) are indicated, respectively, by solid,
dashed, and dotted curves.

4. Conclusion

In conclusion, we have developed a geometrical op-
tics structural analysis method for imperfect retrore-
flection corner cubes with the nonlinear conjugate
gradient method (NCGM). The proposed method of
analysis is a mathematical basis for the nondestruc-
tive optical inspection of imperfectly fabricated retro-

reflection corner cubes, since only the optically
measurable six-beam reflection patterns are used
in the analysis. The NCGM is implemented with
the analytic expression of the gradient vector of
the error function for analyzing the structural error
of imperfect corner cube. Using the proposed method,
we can simply and accurately evaluate the structural
reliability of retroreflection corner cubes.

Appendix A: Structure of a Perfect Corner Cube

The perfect corner-cube structure is placed in the
local coordinate system [23] shown in Fig. 6. In Fig. 6,
the intercept points (xg,y0,20)are given by

(%0,50,20) = \/1%2 - 135 + U \/l%z
) ) 2 3

BB+ 155 + 135
2 )

+135 -0
2 b

(A1)

and the cross point of the incidence facet and its
normal vector from the origin, (x,,,¥,,,2,), are given

by

1
(1/x0) 4+ (1/y0)% + (1/20)?
x (1/x0,1/y0,1/2).

(xrmymvzm) =

(A2)

Then [14, lo4, and I3, are given, respectively, by

he=\/Gn -2 +3% +25,  (Aa)
loe = /(% + m—302 +2%,  (A3b)
lg = /(% 124+ (2o-2n)%  (A3Q)

Then the coordinate (%.,y., k) of the apex point of
the perfect corner-cube structure is given by

B +B -0,

c

Xe = T2, (Ada)
o+ los + Lig) (o = los + lia) (g + log = 11a) (<lig + los + 114)
, (Adb)
2149
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V2 2 2 '
(\/1%2_133‘”%3\/l%2+lg3_l§3> +<\/l%2+l%3_l%3\/_Z§Z+Z%3+l§3) +(\/_l%z+lgs+l \/l ~l5s+1 )

Appendix B: Derivation of the Reflection Transform I

The mirror reflection that occurs on a reflection sur-
face of a corner cube is considered as a linear vector
transform. As shown in Fig. 7, an incident ray with
the direction vector of (k,,k,,k,) is reflected by the
plane described by a;x + b;y + ¢;z + d; = 0. The direc-
tion vector of the reflected ray is denoted by
(ky xRy y k). The relationship between the incident
wave and the reflection wave is given by

(krr Rry by ) =

ry» (kkayakz)
(kxakyakz) : (aivbiaci)
(@®+0b2+c2)

(Bla)

- 2(a;,b;,¢;)

Therefore, the canonical form of the normalized re-
flection transform is given by

kr?x
1
T2 b2 2
1 l l
rz
—aiz + blz +Cl2 —Zaibi —2Ciai
X —2aibi —bLZ +Clz —2bia
-2c;a; -2bjc; a?+bZ+c?
ky
X ky . (B1b)
k.

Hence, I'y, Ty, and I'; are given by
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Fig. 6.
local coordinate system («',y’,2’).

(Adc)
—ai+bi4e?  —2a:b, —2c;a;
PRSP T 507 T iplac?
a; +bi +e; ai2+bé +cé. a; +bi +c
- —24a;b; a;=bitc; —2b;c; -
I = a?+bi+c?  a?+bi+c?  ai+bi4c? |7 fori=1,23.
—2c;a; —2b;c; ai+b7-c?
RN T 527 G2 ibio?
ai+bi+el  ai+bi+el  ai+bi+c;
(B2)

Appendix C: Classification of Retroreflection by an
Imperfect Corner Cube

Here, the classification of retroreflection by imper-
fect corner cube is elucidated with a mathematical
analysis. Let the dihedral angles between T'; and
Ts, between Ty and T3, and between T'5 and T'; be
denoted 019, 693, and 57, respectively.

From Egs. (2a)—(2¢) and the definition of the inner
product, we can obtain the following relationships:

\/cﬁ + b3 +c% \/a + b3 + c5 cos Oy,
= (alvblacl) ’ (a27b2762)

= x9(x3 — X)) + X3Y3Y. — Xoy3xcYe — X2 (X — X3)y2,
(Cla)

4(%,,0,0)

(Color online) Schematics of a perfect corner cube in the
/ / /



(kr,x’kr,y’ r.z )

(ai’bi’ci)

(—a,. ,—b,,—¢, )
Fig. 7. (Color online) Reflection of a ray with incidence direction
(ky,ky, k;) by a plane a;x + by +c;z +d; = 0.

a? + b2 + % \/a? + b + ¢ cos O3
= (ag, by, cz) - (a3, b3,¢3)
= [(~x +x9)x3 — y3)R*
+ (v = x3)xay7 — 302 + (200373 — Xay3) Xy

+ xcyéxc — X9X3Y3Y3]s

(C1b)
Vi + 63+ c2\Jad + b2+ G eos Oy
= (ag,bs,c3) - (ay,b1,¢1)
= —x9x3h? — XoX3Y? + XY 3XcYe. (Clc)

We define the sets of the apex point (x.,y.,—h) such
that 912 = O, 923 = 0, and 031 = O, denoted H12, H23,
and Il3;, respectively. With Egs. (Cla)—(Clc), we ob-
tain the mathematical expressions for Il;y, I153, and
I, respectively, as

Iy = {(x;,5.,~h)| cos 15 = 0}

xz —-X X
= {(xc,ym—h)|h2 — _y2 4 XoYs¥e ~ X3 cyc}7
xg(xg — x3)

I131 = {(xc,yc,—h)|cosﬁ31 = O}

= {(xc7ycy_h>|h2 = _yg +:Z_zxcyc} (CzC)

Based on the three sets defined above, we can classify
the following eight possibilities: (i) cosfy =0,
cos g3 = 0, and cosfsy; = 0; (ii) cos g = 0, cosbyg =
0, and cosfs; = 0; (iii) cosf;9 =0, cosfys =0, and
cos 31 = 0; (iv) cos B9 = 0, cos 93 = 0, and cos b5, =
0; (v) cosO19 =0, cosfy3 =0, and cosf3; =0; (vi)
c0sfi9 20, cosfy3 =0, and cosf3; =0; (vii)
cos B9 =0, cosfys 20, and cosfs; = 0; and (viii)
cos B9 # 0, cosfys3 = 0, and cosf; = 0.

For case (i), cos #15 = 0, cos 53 = 0, and cos 03; = 0,
all six reflection transforms of Egs. (7a)—(7f) become
the same one, since I')I'y = I'sI'y, I'sI's = LT3, and
I'sI'; = I'1T'5. The corner cube in this case is perfect,
giving a perfect retroreflection, that is, the one-beam
retroreflection.

For case (i), cos 819 = 0, cos 83 = 0, and cos 63; = 0,
since I';)I's = I'sT'y and I'sI'; = I'1 T3, the six reflection
transforms are divided into two groups, as I'1/['oI's =
F1F3I‘2 = F3F1F2 and F2F1F3 = F2F3F1 = F3I"2I‘1.
This means that the imperfect corner cube in this
case produces a two-beam retroreflection. The set
of the apex point in this case, I1?), can be represented
by M) = I1$,NI153NI13;, where the superseript ¢ of
IS, indicates the complementary set of II;;. The
trace of the apex point Py in I1® and the traces of
two distinguished corresponding reflected rays on
the hemispherical surface are shown in Figs. 8(a)
and 8(b), respectively.

For case (ii), cosf;9 =0, cosfy;#0, and
COoS 931 = 0, since F1F2 = F2F1 and F3F1 = F1F3, the
six reflection transforms are divided into two groups,
as F1F2F3 = F2F1F3 = F2F3F1 and F1F3F2 =
I3Fg =Tss;. And in case (iv), cos6f;s =0,
cosfys =0, and cosfs; =0, since I'1I'y =TIy} and
I'sIy = I',I's, the six reflection transforms are di-
vided into two groups as I'1I'sI's = Iy’ I’y = 13T,
and F3F2F1 = F2F3F1 = F3F1F2.

By a manner similar to that in case (ii), we can see
that two-beam retroreflection occurs in the imperfect
corner cubes of cases (iii) and (iv). The sets of the
apex points of (iii) and (iv), [I® and II®, are rep-
resented by II®) =TI;,NII5,NII;; and II® =
IToNIIp3NIIG,, respectively. In Figs. 9(a) and 9(b),
the trace of the apex point P5 in I1®® and the traces

(C2a)  of two corresponding reflected rays on the hemi-
s = {(x¢,¥c, —h)| cos O3 = 0}
_ 2 _ 02,2 (9 _ 2. _
_ { (6o, o, —h) 2 = (F2= X8) oV = Y5 +(2 X3Y3 = ¥2Y3) XeYe + XaY5%e xzxgysyc}} (C2b)
vz — (=3 + x2)xs3]
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Fig. 8. (Color online) (a) Trace of the apex point Pj in I1?;

(b) traces of two distinguished rays on the hemispherical surface
for the case cos ;5 # 0, cos Oy = 0, and cosf3; = 0.

spherical surface are presented, respectively. In
Figs. 10(a) and 10(b), the trace of the apex point
P5 in TI™® and the traces of two distinguished re-
flected rays on the hemispherical surface are shown.

For case (v), cos 019 = 0, cos fy3 = 0, and cos 037 = 0,
since I'')Ty = I'sI'y, the six reflection transforms are
divided into the four groups F1F2F3 = Fgrlrg,
F3F2F1 = F3F1F2, Fll"3l"2, and F2F3F1. Thus the
imperfect corner cube in this case produces four-
beam retroreﬂection. The set of the apex points
for this case, II®), can be represented by II®) =
H120H230H§1 In F1gs 11(a) and 11(b), the trace of
the apex point Ps in II® and the traces of four
distinguished reflected rays on the hemispherical
surface are presented, respectively.

For case (vi), cos 015 # 0, cos 093 = 0, and cos 037 = 0,
since I'yI's = I'sI'y, the six reflection transforms are
divided into four groups as II,I's =I'1T3Ty,
F3F2F1 = F2F3F1, F2F1F3, and F3F1F2. And for case
(vii), cosfig =0, cosfss =0, and cosfs; =0, since
o'y = I'sTy, the six reflection transforms are
divided into four groups as I3y =T34y,
F2F3F1 = F2r1F3, F3F2F1, and rlrzrg.
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Fig. 9. (Color online) (a) Trace of the apex point Pj in I1®);

(b) traces of two distinguished rays on the hemispherical surface
for the case cos 0y = 0, cosy3 # 0, and cos 3, = 0.

By in manner similar to that for case (v), we can
see that four-beam retroreflection occurs in the im-
perfect corner cubes of cases (vi) and (vii). The sets
of the apex points of (vi) and (vii), I1® and I1("
are represented by I1® =ITg,NIIy3NIIS,  and
7 = II$,NIT5,NI13;, respectively. In Figs. 12(a)
and 12(b), the trace of the apex point P; in I1®
and the traces of four corresponding distinguished
reflected rays on the hemispherical surface are
shown, respectively. In Figs. 13(a) and 13(b), the
trace of the apex point Py in II) and the traces of
four distinguished reflected rays on the hemispheri-
cal surface are presented, respectively.

Finally, for case (viii), cos 819 = 0, cos 3 = 0, and
cos 631 = 0, all six reflection transforms are different.
Thus six-beam retroreflection occurs in the imperfect
corner cubes of this case as presented in the main
text (see Fig. 3).

Appendix D: Derivation of the Partial Derivatives,
Ox7.2)1'15 Iy T2 Oxy.2) T3

The canonical form of the reflection transform takes
the form



—a?+b2+c? —2ab —2ca
a?+b%+c?  a?+b%+c  a’+bi4c?

_ —2ab a?-b%4c? —2bc
r= a®+b%+c?  a?4+b2 42 aP4b24cE | (D1)
—2ca —2bc a?4+b?-c?

a?+b%+c?  a?+b%4+c?  a’+bi4c?

The total derivative of I' is given by

—a?4+b2+c? —2ab —2ca
a?4+b2+c? a22+b22+C22 a?4+b2+c?
_ —2ab a’-b*+c —2bc
Ar'=A a?+b%+c  a?+b%4+c2 a?+b2+c? | (D2a)
—2ca —2bc a?4+b2-c?

whose elements are given, respectively, by

(—a2 + b2 + 02> ~ Aa(4a(b? +c?)) + Ab(-4ba?) + Ac(-4ca?) (D2b)
a?+b2+c2) (a® + b% 4 c%)? ’
a?-b% +c?\ Aa(-4ab?) + Ab(4b(c? + a?)) + Ac(—4cb?) (D2¢)
a?+b%+c?) (a® + b2 4 ¢2)? ’
a?+ b% - ¢? Aa(-4ac?) + Ab(-4bc?) + Ac(4c(a® + b?
A(Srley St Mbihe)  Actela 1) D2
a’+b%+c (@* + b* +¢)
-2ab _ Aa(2b(-a? 4 b% 4 %)) + Ab(2a(a® - b + ¢?)) + Ac(—4abc) (D2e)
a?+b%+c?) (a® +b% +c?)? ’
—2ca _ Aa(2c(-a? 4 b% + %)) + Ab(-4abc) + Ac(2a(a® + b2 - ¢?)) (D2)
a? +b%*+c?) (@%+b? + c?)? ’
-2bc _ Aa(-4abc) + Ab(2¢(a® - b% + c?)) + Ac(2b(a® + b - ¢?)) (D2g)
a?+b%+c?) (a%+b? + c?)? ' g
Let us recall that (v,ye—h) = (G +53.+5,—  d(an.byer) = lim (Aay/AJ, Aby/AF, Acy/AS)
(h+2)); then, with respect to Ty, since AJ—0
(a1,b1,¢1) = (0,—x9h, —x9y.), the partial derivatives = (0,0, -x5), (D3b)
aﬁ(ala b17 Cl), a&(a17 b17 Cl): and aé(ala b17 Cl) are givena
respectively, by
ag(al, b17 Cl) = AlimO(Aal/AE, Abl/Ag, Acl/Aé)
= (0,-x3,0). (D3c)

aﬁ(ab blacl) = AlimO(Aal/Ajea Abl/A£7 ACI/A‘&")
X In the same way, for (ay,bs,cs) = (ysh, (—x3 +x9) A,

=(0,0,0), (D3a) —Xgy3 +ys¥x. + (X3 —x3)y.), and (ag,bs,c3) = (=ysh,
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Fig. 10. (Color online) (a) Trace of the apex point P; in I1%);
(b) traces of two distinguished rays on the hemispherical surface
for the case cosf5 =0, cosfy3 = 0, and cosf3; = 0.

x3h,y.x3 — y3x.), the partial derivatives 9dz(as, bo,cs),
d;(ag, bg,cs), and d;(aq, by, c) are given, respectively,
as

dz(ag,bg,c9) = Al}cl_{lo(A%/Af’ Aby/AX, Acy/AR)

= (07 an3)7 (D4a)
ay"(a2762702) = Alyifilo(Aaz/A§7A52/A§vAcz/Af/)
= (07 Oaxz _x3)’ (D4b)
az"(ag, b2, CZ) = AlimO(AGZ/A27 Abg/AE, ACz/Ag)
= (y3, —x3 +x3,0). (D4c)

And the partial derivatives, dgz(as,bs,c3),
d;(as, b, c3), and d;(ag, bg,c3) are given, respectively,
as
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Fig. 11. (Color online) (a) Trace of the apex point P; in I1(%);
(b) traces of four distinguished rays (blue, pink, red, and black)
on the hemispherical surface for the case cosf;5 = 0, cosfy3 = 0,
and cos 03 = 0.

0z(as, bs,c3) = Aljl%m()(Aa;;/AaE,Ab3/A£,Ac3/A£)
= (07 07 _y3>7
(D5a)
d5(as, bz, c3) = Algglo(Aas/A&, Ab3/AY, Acs/Ag)
= (07 0; —X3), (D5b)
0z (as, b3, c3) = AlimO(Aa3/Az”, Abs/AZ, Ac3/AZ)
= (-¥3,%3,0). (D5c)

By substituting Eqgs. (D3a)-(D3c) into the canonical
form of Eqs. (D2a)—-(D2g), we obtain the partial deri-
vatives d;I'y, d;I'y, and 9;I'; as



000
=0 0 0], (D6a)
000

1 ~xy(~4c1a7) —x2(—4a;bicq) ~x5(2a1(af + b7 — 7))
05Ty = (@b 22 —xg(—4a1bicy) —x(—4c1b3) ~x3(2b1(a] +b7-c7)) |, (D6b)
LT\ —xp(2aq(af + 07 —cF))  —xa(2b1(af + 03 -¢F))  —xp(der(af +0Y))
1 —~x3(~4b1a}) —x9(2a1(af - b1 + c})) —x9(—4a1b1¢1)
o;I'y = —x2(2a1(af —bF +cf))  —xa(4bi(cf +af))  —wxa(2c1(af-b7+¢cf) |- (D6e)

(2 L b2 1 02\2
(@} + bt +cf) —xo(~4a1bic) —x9(2¢1(a? - b2 +¢2)) ~%3(~4b1c})

By substituting Eqs. (D4a)—(D4c) into Eqs. (D2a)~(D2g), we obtain the partial derivatives 0;I'y, 05z, and 9;I'y
as

1 ¥3(—4coa3) y3(—4agbycs) y3(2bs(a3 + b3 - c3))
m y3(—4asbacy) y3(—4czb§) ¥3(2by (a% + b% - C%)) ) (D7a)
2T P22\ y5(2a9(a3 + b3 —-c3) y3(2bs(ad +b5—-c3)  y3(4es(al +b3))

0;I'y =

1 (29 = x3)(~4cqa3) (xg — x3)(—4azbacs) (g —x3)(2a5(aj + b3 —¢3))
o5y = @2 rc) (g = x3)(—4asbscs) (g — 23) (~4c2b3) (w2 = x3)(2b2(a3 + b3 - c3)) |,
27727520\ (xg —x3)(2a9(a3 + b3 —c5))  (xg —x3)(2ba(al + b5 —c5) (2 —x3)(4ea(a + 7))
(D7b)
1
Ty—— -
= hr T ap
¥3(4ag(b3 +c3)) + (~x3 + %) (-4bya3) ¥3(2bg(=aj + b3 +¢3)) + (=x3 +x2)(2a5(aj — b3 +c3))
¥3(2¢a(~a3 + b3 + ¢3)) + (~x3 + x2)(~4azbscs)
¥3(2by(~a3 + b3 + c3))
x +(=x3 + x2)(2a9(a3 - b3 + ¢3)) y3(—4agb?) + (—x3 + x9)(4by(c3 + a3))
y3(=4agbacy) + (—x3 +x2)(2c5(a3 - b3 +c3))
¥3(2co(—a3 + b2 +¢2)) + (—x3 + x)(—4agbgcs) y3(—dagbacs) + (—x3 + x9)(2c2(aZ — b2 + ¢3))
y3(=4agc3) + (—x3 +x9)(~4bac3)

(D7¢)

By substituting Eqgs. (D5a)~(D5¢) into Eqgs. (D2a)—(D2g), we obtain the partial derivatives 0;I's, 9;I's, and d;I's
as

1 —y3(—4csal) -ys3(—4azbscs) -y3(2a3(a3 + b3 - ¢2))
0:I's = m -y3(—4agbscs) —y3(—4c3b§) —y3(2b3(a§ + b% - C%)) ) (D8a)
377808 -y3(2as(af + b3 —c3) -ys(2bs(a3 + b3 - c3) —y3(4cs(a3 + b3))
1 x3(~4cza3) x3(—4asbscs) x3(2a3(a3 + b3 —c3))
85,F3 = X3 (—4a3b3C3) X3(—403b§) X3(2b3 (a% —+ b% - C%)) s (DSb)

3 72 .20
(a5 + b5 +c5) x3(2a3(a3 + b3 - c3)) x3(2bs(aj + b3 —c3)) x3(4c3(a3 + b3))
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T @3+ b3 +c3)?
—y3(4as (b2 + c2)) + x3(-4b3a2) —y3(2b3(-a2 + b2 + ¢2)) + x3(2a3(a2 - b2 +¢2))
=Y3 (203(-0% + b% + C%)) + x3(—4a3b303)
o | 3(2b3(=a3 + b3 +c3)) + x3(2a3(af - b3 + c3)) ~y3(-4azb3) +x3 (453(C§ + a§)) \
—y3(—4asbscs) + x3(2c3(aj — b3 + ¢35))
~y3(2c3(=aj + b3 +c3)) + x3(-4agbscs) ~y3(~4agbscs) +x3(2c3(a3 - b3 +c3))

—y3(—4ascd) + x3(—4bzc3)

(D8c)

Fig. 13. (Color online) (a) Trace of the apex point P5 in I1(7;
(b) traces of four distinguished rays (blue, pink, red, and black)

(a) on the hemispherical surface for the case cos @y, # 0, cosfy3 # 0, (a)
and cosf3; = 0.
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Fig. 12. (Color online) (a) Trace of the apex point P in I1);
(b) traces of four distinguished rays (blue, pink, red, and black)
on the hemispherical surface for the case cos ;5 # 0, cosfys = 0,
and cosfs; = 0.
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