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Abstract: We investigate the reflection and transmission characteristics of 
the low-dielectric constant cut off barrier in the metal-insulator-metal 
(MIM) waveguide and propose a novel plasmonic nano-cavity made of two 
cut off barriers and the waveguide between them. It is shown that the anti-
symmetric mode in the MIM waveguide with the core of the low dielectric 
constant below the specific value cannot be supported and this region can be 
regarded as a cut off barrier with high stability. The phase shift due to the 
reflection at the finite-length cut off barrier is calculated and the design 
scheme of the cavity length for the resonant tunneling is presented. The 
transmission spectra through the proposed nano-cavity are also discussed. 
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1. Introduction  

In conventional dielectric waveguide it is impossible to confine the light in subwavelength 
scale due to the diffraction limit. Recently there have been various theoretical and 
experimental studies to overcome this fundamental limit and surface plasmon polaritons 
(SPPs) are believed to be one of the most promising methods [1, 2]. SPPs are quasi-particles 
arising from the coupling between electromagnetic waves and oscillations of conduction 
electrons at interface between a metal and a dielectric. Extensive studies for fundamental 
properties and applications have been carried out [3-6]. Resonant tunneling phenomena of the 
SPP mode have been widely studied [7-13]. As a fundamental device, lots of researches on the 
SPP-based waveguide have been carried out [14-20]. Among them, the metal-insulator-metal 
(MIM) waveguide has been known to be able to support the propagating mode within the 
subwavelength modal size with the considerable propagation length [14, 15]. In addition to 
basic studies on the propagating property of various kinds of the MIM-type waveguides, there 
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have been diverse researches for the practical use of them, such as the fabrication [21] and the 
coupling method [22], and the wavelength-selective transmission property [23-26].  

The wavelength-selective device can be a building block of the de-multiplexer which is 
used to separate each signal channel with different wavelength. There have been suggested 
lots of wavelength-selective devices [23-25]. Those employ the Fabry-Perot effect and mainly 
consist of two parts: two mirrors and the waveguide between them. To make a mirror-like 
structure, we can think of the waveguide Bragg grating (WBG) structures composed of 
alternatively stacked regions with different types of the core, the cladding, or the core width. 
And by introducing an artificial defect in the periodicity one can implement a wavelength-
selective device. It was reported that we can also make use of the higher order of Bragg 
reflections as well [26]. 

However, those WBG-based wavelength-selective devices require several numbers of 
gratings, resulting in the unavoidable long structure. In this paper, we study the cut off 
property of the MIM waveguide and suggest a resonant tunneling of the SPP mode through 
the plasmonic nano-cavity composed of two cut off barriers and the MIM waveguide between 
them. The key idea we come up with is that the WBG region for the mirror-like function can 
be replaced by the cut off barrier made of a transparent dielectric core with the low dielectric 
constant, not an intrinsically opaque metal. In the conventional dielectric waveguide, cut off 
of a mode means that the power confinement in the cladding becomes larger than that in the 
core and there can still be power transmission through the cladding [27]. Unlikely, cut off in 
the MIM waveguide prevents the power from propagating not only through the core but also 
through the cladding due to the opaque metal cladding. It will be shown that the proposed 
structure can be used to make the wavelength-selective device with the considerably short 
length. 

This paper is organized as follows. Firstly, we examine the propagating property of the 
MIM waveguide focusing on the cut off property. Then, the reflection and transmission 
properties of the cut off barrier with the finite length are investigated. Next we examine the 
transmission characteristics through the Fabry-Perot structure consisting of two barriers and 
the waveguide between them. The discussion of the cavity properties such as quality (Q) 
factor is also presented. 

2. Cut off properties of the MIM waveguide  

In this section, we characterize the cut off properties of the MIM waveguide. Starting from the 
analysis of the propagating mode in the MIM waveguide, we will discuss the cut off condition 
of the MIM waveguide. It will be shown that there is a specific regime of material and 
geometrical parameters, in which no propagation mode exists.  

 
Fig. 1. Metal-insulator-metal surface plasmon polariton waveguide. 

Let us consider the propagating mode of the MIM waveguide (Fig. 1). The core is a 
dielectric material with dielectric function dε  and width d. The cladding is a metal and its 

dielectric function, mε , is described by the Drude model as follows: 
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( )
2
p

m i

ω
ε ε

ω ω γ∞= −
+

,                                                           (1) 

where ε∞  is the infinite frequency dielectric constant, pω  the bulk plasma frequency, ω  the 

angular frequency, and γ  the collision frequency which is related to the dissipation loss in the 

metal. We assume that the metal is silver ( 3.7ε∞ = , 9eVpω = , and 0.018eVγ = ) [26]. Note 

that we express pω , ω , and γ  in a form of the photon energy by multiplying the Planck’s 

constant �  [26]. It is known that mε  is negative in the optical frequency regime, where ω  

has range from ~2eV to ~4eV. And its absolute value decreases with increasing ω , and mε  
can even be positive. We assume the monochromatic operation with the free space 
wavenumber 0 0/k cω= , the time-dependency of ( )exp j tω− , and corresponding free space 

wavenumber 0 02 / kλ π= . Here, 0c  is the speed of the light in vacuum. We consider the TM 

mode (p-polarized), so that xH , yE , and zH  are all zero. Since the propagating properties of 

the three-dimensional MIM waveguide do not vary so much from those of the two-
dimensional structure even if the vertical height is reduced to subwavelength, we think our 
analysis can elucidate the properties of the MIM waveguide without much loss of generality 
[21]. 

The propagating modes that can be supported in the MIM waveguide are classified into 4 
types according to their field distribution: the photonic anti-symmetric mode, the photonic 
symmetric mode, the plasmonic anti-symmetric mode, and the plasmonic symmetric mode.  
The photonic modes mean that the field distributions in the core are sinusoidal, whereas the 
plasmonic modes correspond to the exponentially decaying fields. The anti-symmetric and the 
symmetric modes are the guided modes with the anti-symmetric and the symmetric transverse 
electric and magnetic field distributions, respectively. The corresponding characteristic 
equations are given as follows [20]: 

photonic symmetric mode : tan
2
d d m

m d

k d

k

ε κ
ε

⎛ ⎞ =⎜ ⎟
⎝ ⎠

,                                     (2.a) 

photonic anti-symmetric mode : cot
2
d d m

m d

k d

k

ε κ
ε

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

,                              (2.b) 

plasmonic symmetric mode : tanh
2
d d m

m d

dκ ε κ
ε κ

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

,                              (2.c) 

plasmonic anti-symmetric mode : coth
2
d d m

m d

dκ ε κ
ε κ

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

.                            (2.d) 

Here, dk , dκ , and mκ  denote the transverse wavenumber in the core of the photonic mode, 
that in the core of the plasmonic mode, and that in the cladding, respectively. Note that the 
sign of the right hand side in Eq. (2.a) is positve, whereas those in Eqs. (2.b) to (2.d) are 
negative. The origin of the difference can be found in Refs. 14 and 19. The momentum 
conservation condition yields  

2 2 2
0d dk kβ ε+ = ,                                                         (3.a) 

2 2 2
0d d kκ β ε− + = ,                                                         (3.b) 

2 2 2
0m mkκ β ε− + = ,                                                         (3.c) 
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where β  is the longitudinal wavenumber. Note that β  is common both in the dielectric core 
and the metal cladding due to the phase matching conditon. Combining Eqs. (2.a)-(2.d) and 
Eqs. (3.a)-(3.c), we can obtain β . When the dielectric constants possess imaginary term, β  
should be complex. The effective refractive index of the propagating mode is defined as 

( )0Re /effn kβ= . Whether the propagating mode is the photonic mode or the plasmonic mode 

depends on the relation between effn  and dε , i.e., the mode is called the photonic mode if 

eff dn ε≤  whereas it is called the plasmonic mode if eff dn ε≥ . In addition, it is known that 

the fundamental anti-symmetric mode can be either the photonic or plasmonic modes [14]. 
This property will be discussed later. The propagation length at which the field intensity 

decreases by 1/ e  is given by ( )( ) 1
2 ImpL β −

= . It is of importance to understand the 

functional behavior of effn  and pL  over material and geometrical parameters such as dε , d , 

and 0λ , and there have been lots of researches on their characteristics [14, 15]. Especially, for 
a specific condition there is no propagating mode in the MIM waveguide, which is called cut 
off. In this paper, we focus on the cut off property of the propagating mode. 

In Figs. 2(a)-(d), we illustrate effn  (solid line) and pL  (dotted line) as a function of dε  and  

d . Figures 2(a) and (c) correspond to the symmetric mode and Figs. 2(b) and (d) the anti-
symmetric mode. In Fig. 2(a), we observe that as dε  increases, effn  of the symmetric mode 

increases and pL  decreases. When dε  becomes close to mε  described by the vertical dashed 

line, effn  grows dramatrically and pL  goes to zero. For d mε ε> , there is no symmetric mode, 

i.e., cut off. This can be ascribed to the fact that each interface between the core and the upper 
(lower) cladding cannot support a SPP mode for d mε ε> . In other words, the wavenumber 

of the single interface SPP mode [1], 

 . . 0
m d

S I SPP
m d

k k
ε ε

ε ε
=

+
,                                                      (4) 

is complex-valued for d mε ε> . It is also seen that cut off does not occur in the low dε  

regime. Figure 2(b) illustrates effn  and pL  of the anti-symmetric mode. Likewise to the 

symmetric case, effn  increases and pL  decreases with increasing dε . When dε  approaches 

mε  (the right vertical dashed line), effn diverges and pL  becomes zero, i.e., cut off. The 

origin of this kind of cut off is the same as that in the symmetric case: there is no single 
interface SPP mode for d mε ε> . It should be mentioned that when the core width is 

extremely small, there can be the anti-symmetric mode with the considerable propagating 
length. In this case, the signs of the real and imaginary parts of β  are opposite, which means 
that the power flows in the opposite direction to the phase, i.e., negative effective refractive 
index. There has been reported an experimental demonstration for this kind of negative 
refraction  effects by Lezec et al. [28].   

Let us now consider the low- dε  regime. Behaviours of effn  and pL  of the anti-symmetric 

mode are different from those of the symmetric mode. In the anti-symmetric mode they 
become zero as dε  decreases to a critical point, i.e. another type of cut off. Considering that 

effn  becomes zero at this critical point, we can derive this point from an implicit function. 

Note that the anti-symmetric mode should not be the plasmonic mode but the photonic mode 
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near the low- dε  cut off point. This is because  this kind of cut off occurs as effn  becomes zero, 

which means effn  should be smaller than dε . Hence we invoke Eqs. (2.b), (3.a), and (3.c) to 

calculate the low- dε  cut off condition. Substitution of 0β =  into Eqs. (3.a) and (3.c) and 
combining them with Eq. (2.b) result in the following condition: 

0cot 0
2

cut off
cut off

m

k d ε
ε

ε
⎛ ⎞− =⎜ ⎟ −⎝ ⎠

.                                                (5) 

  

  
Fig. 2. Effective refractive index and the propagation length as a function of (a) dε  in the 

symmetric mode, (b) dε  in the anti-symmetric mode, (c) d  in the symmetric mode, and (d) 

d  in the anti-symmetric mode. 80nmd =  in (a) and (b). 4dε =  in (c) and (d). 

0 532nmλ =   in all cases. 

It should be mentioned that there is no exact real-valued dε  ( cut offε ) satisfying Eq. (5) 

since only mε  is complex. However, the imaginary part of mε  is quite small compared to the 

real part. Thus the error from taking mε  instead of mε−  is negligible. For given parameters 

in Fig. 2(b), cut offε  satisfying Eq. (5) with mε  is obtained as 4.522, which is in good 

agreement with the cut off point observed in Fig. 2(b). The physical origin of this kind of cut 
off can be understood from the repulsive Coulomb force. Recalling that the anti-symmetric 
mode has the symmetic distribution of the collective oscillation of free electrons near the 
surface,  i.e., the surface plasmons, we know that there is a repulsive force between the SPPs 
at upper and lower metal claddings, which pushes the SPPs into the metal cladding and 
prevents the SPP mode from propagating through the waveguide. Since the amplitude of this 
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repulsive force increases with decrease of dε , the mode is cut off below a critical value of 

cut offε . The reason why the propagation length of the anti-symmetric mode is usually shorter 

than that of the symmetric mode can be understood from this point of view as well.  
Let us examine the cut off property arising from the narrow core. Figure 2(c) shows effn  

and pL  as a function of the core width for the symmetric mode. When the core is infinitely 

wide, the interference between the single interface SPP modes becomes weak and effn  

approaches ( ). . 0Re /S I SPPk k . As the core width decreases, effn  increases and pL  decreases, 

and cut off occurs when 0d = . As a matter of fact, it is somewhat delicate to call this cut off. 
In other words, 0d =  stands for the absence of the core, which means that there is no guiding 
structure. Contrary to the symmetric mode, however, effn  of the anti-symmetric mode 

decreases with decreasing d  and the anti-symmetric mode has a critical point of the core 
width below which no propagation mode exists (Fig. 2(d)). We can estimate the critical core 
width by using the fact that 0effn =  at the point. Using Eq. (5), we express the cut off 

thickness as follows: 

1

0

2
cot d

cut off
md

d
k

ε
εε

−=
−

.                                               (6) 

For given parameters in Fig. 2(d), the cut off thickness with mε  instead of mε−  is calculated 

as 87nm, which coincides well with results (vertical dashed line in Fig. 2(d)). Table 1 
summarizes the aforementioned cut off properties such as cut off dε  and d  for the symmetric 
and the anti-symmetric modes. 

Table 1. Cut off conditions of dε  and d . 

 Symmetric mode Anti-symmetric mode 

dε  d mε ε>  d mε ε>  or 

d cut offε ε<  

d  0d →  1

0

2
cot d

cut off
md

d d
k

ε
εε

− ⎛ ⎞
< = ⎜ ⎟⎜ ⎟−⎝ ⎠

 

Before closing this section, let us compare the concept of mode cut off in conventional 
dielectric slab waveguides and the MIM plasmonic waveguide. In conventional dielectric 
waveguides, the cut off is a state in which no guided modes can be supported through the core 
of the waveguide. It happens when the operating wavelength is much longer than the core 
width or the index difference between the core and the cladding is very small. It can be 
explained by using effn , which usually ranges from the refractive index of the cladding to that 

of the core.  As the wavelength increases, or as the core width decreases, or, as the refractive 
index difference between the core and the cladding decreases, effn decreases and becomes 

close to the refractive index of the cladding. At a specific point where it becomes smaller than 
the cladding index, we say that the mode is cut off. However, it should be pointed out that, the 
light wave can radiate through the cladding even in the cut off state. This is because both the 
core and the cladding are transparent, which means that they can support the radiation of the 
plane wave. On the other hand, the metal cladding of the MIM waveguide is opaque itself. As 
can be seen in Eq. (3.c), the negative mε  requires that the electromagnetic field in the 
cladding exponentially decay. Therefore no light energy can leak into the cladding at any 
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situation. When the mode is cut off, since neither the light energy be able to propagate 
through the core nor to leak into the cladding, it should be totally reflected. This is the 
fundamental difference between the cut off in conventional dielectric waveguides and the 
MIM plasmonic waveguide. 

3. Reflection and transmission properties through barrier with finite length 

In this section, based on the aforementioned cut off properties we examine the reflection and 
transmission properties through the finite-length MIM waveguide without a propagating mode. 
The cut off MIM waveguide region can be regarded as a barrier, since the incident wave is 
reflected by it. It will be shown that due to the finite length some of energy can be transmitted. 
The phase shift originating from the reflection will also be discussed. 

Let us consider a MIM waveguide structure which is a cascade structure of three layers: a 
propagating region, a cut off region, and a propagating region (Fig. 3). There can be various 
combinations of material and geometrical parameters to form the cut off region. For the 
symmetric mode, the MIM waveguide with the core of high dε  ( mε> ) or zero- d  will 

prohibit the propagation. In the anti-symmetric mode, d mε ε> , ,d d cut offε ε< , or cut offd d<  

can be used to form a barrier. In this paper, we focus on cut off of the anti-symmetric mode 
with low dε  ( ,d cut offε< ). Other configurations will be reported in the next publication. 

Figure 3(a) shows the schematic diagram of the finite-length barrier in the MIM 
waveguide. The TM-polarized anti-symmetric mode is incident from the left side. The MIM 
waveguide with the core of hε  supports the guided mode, whereas that of lε  cannot. The 
latter acts as a barrier and most energy of the incident wave will be reflected. It should be 
mentioned that, although there can be symmetric propagating mode in the MIM waveguide 
with the core of lε ,  the incident anti-symmetric mode cannot be coupled into the symmetric 
mode owing to the geometrical symmetry. Meanwhile, since the length of barrier is finite, 
there can be transmitted energy by tunneling. This is reminiscent of the tunneling of electron 
through the potential barrier in the quantum mechanics (Fig. 3(b)). 

 
Fig. 3. (a) Finite-length barrier ( lε ) in the MIM waveguide with the core dielectric 

constant  of hε .  (b)  Tunneling of  electron through a  potentia l barr ier . 

To examine the reflection and transmission properties, we used the rigorous coupled-wave 
analysis (RCWA) [29-32]. The main benefit from the RCWA is that we can distinguish 
energy of a mode from another. 

In Fig. 4(a), we depict the reflection coefficient, 
2

R r= , and the phase shift due to the 

reflection,  ( )argref rφ = , as a function of the barrier length, L , for various values of the 

permittivity of the cut off barrier ( 2, 4, 4.3lε = ). Here r  denotes the reflection amplitude 

obtained by the RCWA. hε is chosen to be 6. d  is set to be 80nm. The reflection coefficient 

scales with the barrier length. If lε  is smaller than cut offε  obtained by Eq. (5), cut off occurs 
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(see Fig. 2(b)). As lε  decreases, the barrier strength is enhanced, i.e., the reflection coefficient 
increases. With regard to the reflection phase shift, it is observed that as the barrier length 
decreases the reflection phase shift asymptotes to 90°. This is in good agreement with the 
result of the photon tunneling through a one-dimensional composite barrier [33-35]. As the 
barrier length increases, the reflection phase shifts for various values of lε ’s also change and 
they asymptote to the specific values of their own. It is noteworthy that the reflection phase 
shift of the cut off barrier with 4lε =  remains almost constant around 90° since the asymptote 
value is also 90°. As will be discussed later, the reflection phase shift is necessary to calculate 
the cavity length. In other words, the resonant tunneling condition comes from the 
constructive interference between the propagating modes with the multiple reflections. When 
the overall phase shift that the propagating mode experiences during the single round trip 
becomes an integer multiple of 2π , the resonant tunneling occurs.  

  

  
Fig. 4. (a) Reflection coefficient and phase shift due to the reflection as a function of the 
barrier length for the anti-symmetric mode. (b) Dependence of the transmission coefficient on 
the barrier length of the anti-symmetric and symmetric modes. Field distributions of yH  for 

(c) the anti-symmetric mode and (d) the symmetric mode with the barrier length of 200nm. 
6hε = , 80nmd = , and 0 532nmλ =  in all cases. 2, 4,4.3lε = in (a). 4lε =  in (b)-(d). The 

white dot ted- lines show the boundaries of the structure shown in Fig. 3(a) . 

Figure 4(b) depicts the transmission coefficients, 
2

T t= , of the anti-symmetric (solid 

line) and the symmetric (dashed line) modes as a function of the barrier length, where t  
represents the transmission amplitude. Here the barrier is made of a low dε  core, where the 
anti-symmetric mode is cut off. It is seen that the transmission coefficient decreases with 
increase of the barrier length and becomes less than 1% when the barrier length is 190nm. 
Contrary to the anti-symmetric mode, however, the symmetric mode can transmit through the 
low dε  region. This is because the low dε  region does not act as a barrier for the symmetric 
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mode. As we discussed above, the symmetric mode is not cut off with a low dielectric 
constant. Only the anti-symmetric mode feels the low dε  as a barrier. The mode selective 
transmission property can be used for a mode filter.  

We show in Fig. 4(c) the transverse magnetic ( yH ) field distribution when the anti-

symmetric mode is incident from the left side to the 200nm-length barrier. It is seen that most 
energy is reflected, giving rise to the standing wave at the incident region. Note that the period 
of the standing wave is about 20nm. This originates from the fact that effn  of the anti-

symmetric mode at the given structure parameters is 2.67 and thus the effective wavelength is 
199.3nm. Please remind that the terminologies ‘symmetric’ and ‘anti-symmetric’ are based on 

yH , thus the anti-symmetric mode distribution has a node line along the center line of the 

core. Figure 4(d) illustrates yH  field distribution for the symmetric mode. We can check that 

most energy of the symmetric mode can transmit through the low dε  region. 
One may be inclined to compare the strength of the cut off barrier and the WBG. By 

modulating the width of the dielectric constant of the core, one can make the MIM WBG 
through which guided modes with specific wavelengths cannot transmit. Figure 5(a) shows 
the schematic diagram of a MIM WBG with the core-index modulation. Two different kinds 
of core with dielectric constants of 6 and 5 are alternatively stacked with the period P  of 
130nm and the filling factor f  of 0.5. N  denotes the number of gratings. The period was 
chosen in such a way that the fundamental Bragg reflection occurs at the wavelength of 
532nm. We investigated the transmission property through the MIM WBG as a function of the 
number of gratings (Fig. 5(b)). The more gratings we use, the less the transmission becomes. 
However, in order to achieve the transmission less than 1%, more than 9 gratings are needed, 
which leads to the total length of 1.1μm.  

 

Fig. 5. (a) Schematic diagram of the MIM waveguide Bragg grating. (b) Transmission as a 
function of the grating number.  2 6ε = , 1 5ε = , 80nmd = , 130nmP = , 0.5f = , and 

0 532nmλ = . 

4. Resonant tunneling of the SPPs through the plasmonic nano-cavity 

We are now led to discussion on the transmission property through the plasmonic nano-cavity 
which is composed of two cascaded cut off barriers with the distance 2L (see Fig. 6(a)). 
Owing to the finite length of the first cut off barrier, some of energy of the incident anti-
symmetric mode can transmit by the tunneling and multiple reflections occur between two cut 
off barriers. If the overall phase shift that the propagating mode experiences, which is given 

by ( )2 02 2 /eff refn Lψ π λ φ= + , becomes an integer multiple of 2π, the constructive 
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interference results in the resonant tunneling. The cavity length for the q-th resonant tunneling 
is hence obtained as follows: 

( )0
2 , 1, 2,3,...

2
ref

eff

L q q
n

φλ
π

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
.                                    (7) 

In Fig. 6(b), we show the transmission coefficient of the anti-symmetric mode as a 
function of the cavity length ( 2L ) for various values of the barrier length ( 1L ). The arrow 

related with 1L  indicates the trend of decreasing 1L  from 80nm to 40nm. Several transmission 

peaks are observed. Note that effn  is 2.676 and refφ  is 90°. The first transmission peak at the 

2L  of 50nm corresponds to the first resonant tunneling mode and we can see the second and 
third modes at 149nm and 249nm, respectively. It is noteworthy that the cavity length for the 

fundamental resonance is much smaller than the half wavelength, ( )0 / 2 effnλ .  

 

 
Fig. 6. (a) Schematic diagram of the MIM Fabry-Perot cavity consisting of two cut off barriers 
and the waveguide between them. (b) Dependence of the transmission coefficient on the length 
of the cavity for various values of barrier lengths. yH  field distributions at (c) the point A (the 

first resonance mode) and (d) the point B (the second resonance mode). 6hε = , 4lε = , 

80nmd = ,  and 0 532nmλ =  in all cases. The white dotted-lines show the boundaries of the 

structure shown in part (a). 

The peak transmission coefficient value decreases with increase of the order of the 
resonance mode owing to the dissipation loss in the metal. As the cut off barrier length 
decreases from 80nm to 40nm, the transmission coefficients increase, whereas the 2L  values 
of transmission maxima remain unchanged. This is due to the fact that the reflection phase 
shift is nearly independent of the barrier length for 4lε = , as seen in Fig. 4(a). The dashed 

vertical lines (from left to right) in Fig. 6(b) indicate 2L  of 50nm, 149nm, and 249nm, 
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respectively. To verify the results, we show in Figs. 6(c) and (d) the transverse magnetic field 
distributions at the first (point A) and the second (point B) resonance modes. A node line 
along the center of the cavity in the transverse direction is observed for the second mode, 
whereas no node line is observed for the first resonance mode.  

 

 
 

Fig. 7. (a) Transmission spectra for various values of the cavity lengths (L2). (b) Resonance 
wavelength and the full-width at half maximum (FWHM) as a function of the cavity length. (c) 
Q factor versus the cavity length. 6hε = , 4lε = , 80nmd = , 1 80nmL =  and 

0 532nmλ =  in all cases. 

Based on the aforementioned cavity properties, we investigated the transmission 
coefficient as a function of the operating wavelength. Figure 7(a) illustrates the transmission 
spectra for various values of cavity lengths for the fundamental resonance mode. It is 
observed that the resonance wavelength increases as the cavity length gets longer. Therefore 
by arranging the plasmonic nano-cavities with different cavity lengths we can selectively 
transmit the channels with different carrier frequencies. In Fig. 7(b), we depict the resonance 
wavelength (left y-axis) and the full-width at half maximum (FWHM, right y-axis) as a 
function of the cavity length for the fundamental resonance mode. It is seen that the resonance 
wavelength scales with the cavity length, whereas the FWHM decreases with increase of the 
cavity length. The Q factor defined as the resonance wavelength normalized by the FWHM is 
shown in Fig. 7(c). We obtain Q factor of 52 at the resonance wavelength of 532nm. The Q 
factor can be improved by using a longer cut off barrier. The Q factor is related to the finesse 
factor, which is governed by the effective overall distributed-loss coefficient [27]. If the 
length of the cut off barrier increases, the reflectance of each single barrier also increases, 
resulting in the higher Q factor. On the other hand, the longer cut off barrier exhibits the 
higher absorption by the barrier, resulting in the degradation of the total transmission energy.  
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5. Conclusion  

In this paper, we examined the reflection and transmission properties of the cut off barrier in 
the MIM waveguide and investigated the resonant tunneling of the SPP mode through the 
plasmonic nano-cavity consisting of two cut off barriers and the MIM waveguide between 
them. It turned out that the MIM waveguide with the core of the low dielectric constant below 
the specific value ( cut offε ) cannot support the anti-symmetric mode and can be used as a cut 

off barrier. The reflection from and transmission through a single cut off barrier was 
investigated. Based on the reflection and transmission properties, we can calculate the cavity 
length for a specific resonance wavelength, which is in good agreement with our simulation 
results. The Q factor of the proposed structure is about 52. We believe that the proposed 
structure can be used to implement a wavelength-selective device for the subwavelength-scale 
integrated nano-photonic circuits. 
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