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Phase-shifting interferometry with a genetic algorithm is proposed. The correction of unknown phase-
shifting error is an important task in general phase-shifting interferometry. Since phase-shifting errors
generate twin image noise in a reconstructed image, we can reduce the phase-shifting errors indirectly by
trying to eliminate the twin-image noise in the reconstructed image. By Zernike polynomial expansion,
the reconstructed image is represented as the evenness and oddness, where the ratio of the evenness and
oddness is a measure of the amount of the twin image noise. We employ the genetic algorithm for finding
the fittest phase shifts of interferograms by reducing the evenness of the reconstructed image, which
leads to reduction of phase-shifting errors. This phase-shifting interferometry with a genetic algorithm

is confirmed experimentally.
OCIS codes:  070.2580, 090.1760, 230.6120.

1. Introduction

Phase-shifting interferometry is a representative
temporal phase measurement technology. This tech-
nology receives much attention not only to acquire
three-dimensional information of objects, but also
to measure the deformations or resonant stationary
waves of instruments [1-4]. In general phase-shift-
ing interferometry, at least three phase-shifting
steps are required in order to delete nondiffractive
terms and to remove any ambiguities of phases in
the object wave. For the purpose of measuring the ob-
ject wave accurately, the phase of the reference wave
should be shifted definitely. However, practically, it is
hard to avoid phase-shifting errors since both misca-
libration and vibration of optics could cause phase-
shifting errors [5].

The simplest approach to reduce the effect of phase-
shifting errors is to simply increase the number of
phase-shifting steps to more than three [6]. Phase-
shifting interferometry with five steps is reported
to be more robust than the method with four steps
to the errors induced from linear phase-shift miscali-
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bration and detector nonlinearity [7]. As branches of
minimum-norm methods, the least-squares fitting
method and the maximum-minimum algorithm pre-
sent proper solutions in spite of phase-shifting errors
[8,9]. However, these methods require a lot of phase-
shifting steps to correct even one imprecise phase
shift. And these are based on the pixel-by-pixel calcu-
lation among interferograms to evaluate the error
function. If noises are randomly distributed in inter-
ferograms, these methods with pixel-by-pixel calcula-
tions cannot lead to optimized solutions.

To compensate these randomly distributed noises,
integral methods averaging out whole phases in each
interferogram are proposed. One integral method
using a polynomial expansion in interferograms de-
tects harmonic contents and deletes white Gaussian
noise [10]. Other methods computing the averaged
difference of phases among interferograms estimate
arbitrary unknown phase shifts [11-13]. However,
these integral methods assume that the average
value of noises over each interferogram is quite small
in comparison with its phase shift. And these evalu-
ate the amounts of phase-shifting errors by comput-
ing interferograms on the hologram plane without
taking reconstructed images into consideration.



Therefore, in the case that the noises distributed on
interferograms cancel one another and their average
is negligible, these methods cannot find the fittest so-
lutions for improving reconstructed images.

As an indirect approach to error reduction, there
are some methods that improve reconstructed
images. In the case that the impulse response of
the system is blurred resulting from the aberration,
the sharpness metrics make the objects recognizable
effectively [14-16]. However, this approach only fo-
cuses on eliminating annoying noise in reconstructed
images by image processing. Therefore, it is impossi-
ble to find the amounts of phase-shifting errors quan-
titatively with these methods.

In this paper, we propose a novel scheme of phase-
shifting interferometry with a genetic algorithm ex-
ploiting the special property of twin image phenom-
ena, which frequently occur resulting from the
inaccuracy of the phase shifter. The twin image noise
in reconstructed images is a well known issue in di-
gital holography. This twin image noise is a conju-
gate term of the object wave, where the conjugate
term is regarded as the wave propagating in pseudo-
coordinates from the hologram plane [17,18]. In gen-
eral phase-shifting interferometry, phase-shifting
errors lead to generating of twin image noise, and
the degree of twin image noise is defined as a mea-
sure of the amount of phase-shifting errors. There-
fore we can reduce the phase-shifting errors
indirectly by trying to eliminate the twin-image
noise in reconstructed images. The degree of twin im-
age noise is evaluated by the ratio of coefficients in
Zernike polynomials. Generally, Zernike polynomial
expansion is used to express the aberration of optics
[19]. The Zernike polynomials are composed of two-
dimensional radial even and odd functions. These ra-
dial even and odd function sets are very useful for
evaluating the existence and amount of twin image
noise. The genetic algorithm is employed to find the
optimized phases of interferograms to increase the
oddness of the reconstructed image, that is, to elim-
inate the twin image noise.

This paper is organized as follows. In Section 2, the
twin image noise in Fourier optics is expressed nu-
merically. In Section 3, a genetic algorithm for elim-
inating twin image noise is proposed. In Section 4,
experimental results are presented and discussed.
In Section 5, a conclusion and perspective are given.

2. Twin Image Noise in Fourier Optics

In this section, general phase-shifting interferometry
is explained, and the relation of twin image noise and
phase-shifting errors is formulated. The characteris-
tics of this twin image noise are described in Fourier
optics, and from the resultant phase-shifting equa-
tion, how to estimate phase shifts of interferograms
is detailed.

Figure 1 shows the optical configuration for phase-
shifting interferometry in Fourier optics. The phase
shifter is realized by the piezo-driven mirror, and the
variable beam splitter is used to balance the inten-
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Fig. 1. Optical configuration for phase-shifting interferometry in
Fourier optics.

sities of object and reference waves. This study is car-
ried out in Fourier optics, which is preferred since the
object wave is transformed by a Fourier lens. There-
fore the broad angular spectrum is recorded in holo-
grams, and the optical power loss of object waves is
relatively small [20].

In general phase-shifting interferometry, the ith-
step interferogram is represented as

I; =|Up + Ug,;|* = A3 + A% + 2ApAR cos(gp — a;),
(1)

where the object wave and reference wave are respec-
tively given by

Uop = Ao exp(jo), (2a)

Ugr; =Ag exp(ja;). (2b)

The relationship among phases of interferograms
is easy to understand when interferograms are re-
presented as two-dimensional vectors in the complex
plane [21]. The unit vectors of the object wave and
reference wave are defined by

@ =exp(jp) = (cos @, sin @), (3a)

(3b)

a; = exp(jo;) = (cos a;, sin a;).

And the ith-step interferogram is clearly represented
as

I; =A% + A% + 2A0 ARg-a;. (4)

“'77

Here the operator means inner product in the
complex plane.

The difference between a pair of interferograms
eliminates nondiffractive terms, and in this differ-
ence, the influence of the reference wave is removed
by dividing with the amplitude of the reference wave.
Therefore this result, I;;, determined from a pair of

interferograms and the amplitude of reference wave,
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could be a base of phase-shifting interferometry,
which is represented as

I;=I; - 1j) /Ag = 2A0¢+(4; - &)

= 2AO\/2—2cos(ai - aj) sin(qo—ai;aj). (5)

This relation between two phases of interferograms
in the complex plane is shown in Fig. 2. The norm of
(&; — &;) depends on the angle between &; and &; [22],
and it is related to the influencing power of the
base I;.

Most phase-shifting interferometry equations
could be represented as the summation of the base
I;; with complex coefficients. For example, the four-
step phase-shifting interferometry equations in class
A of Ref. [7] are converted as follows:

I,-1,
—tan(¢’) = , 6a
W) =7 -7, (62)
L+1,-1;-1,
tan(¢' +z/4) I,-T,-T, + 1, (6b)
Up =113 + 14, (6¢)
Uy = e * (11 + 1y3) +je ™/ *(I31 + I 3). (6d)

Here, prime means the calculated value from mea-
sured interferograms. and Egs. (6a) and (6b) are
equivalent to Egs. (6¢) and (6d), respectively.

In this paper, we use the phase-shifting interfero-
metry equation without constraints that the coeffi-
cients are unities. Since any phase-shift base [;; is
represented as the summation of I;; and -I;;, without
the loss of generality the phase-shifting interferome-
try equation is simplified as

Fig. 2. Relation between two phases of interferograms in the
complex plane.
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Ub = Zaillih (7)

238

where a;; is the complex number with the magnitude
equal to or less than unity.

This phase-shifting interferometry equation is ex-
tended with the actual object wave term and the con-
jugate term as

U, = Z 2a;1Ap[(cos a; — cos ay) cos ¢

11
+ (sing; — sinay) sin ¢]

= Zail[(cos a;—cosay)(Up + Up)

1%l
+ (sing; —sinay ) (Ug - U}))]

= E a;1(cosa; —cosay + sinag; —sinay)Up
[Z38
+ g a;1(cosa; — cos g — sina; + sinay )Up,.
i1l

(8)

Here, the actual object wave is given by U, and its
conjugate U, represents the twin image noise. The
coefficient of U}, diminishes when phase shifts {«;[i #
1} are definitely executed suitable for complex coef-
ficients {a;1|i # 1}. The phase-shift errors obstruct
elimination of the twin image noise term in
Eq. (8). Therefore there is a close connection between
the twin image noise and phase-shifting errors, and
the degree of twin image noise could be a measure of
the amount of phase-shifting errors.

In this paper the hologram is located at the focal
plane, and the propagation of twin image noise in
Fourier optics is explained as the transfer function.
In a hologram with Fourier optics the original object
image and twin image noise are spatially related to
each other. Figure 3 shows the schematic of a holo-
gram with a Fourier transform lens with focal length
f. The propagation of an actual object wave from z =
z, to the backward focal plane z = 2f is formulated as

Uo(Mfx: Mfyiz =2f) = H(fx,fy;20)FlUo(x,y;20)]-
9)

Frontward
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Fig. 3. Original object and twin image in hologram with Fourier
optics.



Here, F denotes Fourier transform and H(fx,fy;20)
is the transfer function, defined as

Hifx.frizo) = J%exp[fmo(f?f 12,

And, the conjugate of this transfer function is repre-
sented as

(10)

H*(fx,fy;2z0) = -H(fx,fy;—20)-

Therefore the propagation of twin image noise is gi-
ven by

(11)

Utwin (6,51 =20) = F U (i fx, M fviz = 2f)/
H(fx,fy;—20)]
= -FY[Uo(-¥fx,~¥fv:z =2f)/
H(~fx,~fy:z0)]"}

— ~U(-x, ¥i20)- (12)
In Eq. (12), the twin image appears centrosymme-
trically with the original object image at the recon-
struction plane, and Fig. 4 shows this characteristic
from experimental results where the images are nu-
merically reconstructed at various positions. The ho-
logram is constructed with a single base, and there is
an ambiguity of z, which leads to the existence of twin
image noise with the same intensity as the actual ob-
ject wave. Bolts are located at the focal plane z = 0,
and a coin is located at z = 0.2f. Both twin and origi-
nal object images of the bolts are in focus at z = 0, as
shown in Fig. 4(b). On the other hand, in the case of
the coin, the twin image is in focus at z = —-0.2f in
Fig. 4(a), and the original object image is in focus cen-
trosymmetrically at z = 0.2f in Fig. 4(c).

The centrosymmetric property of twin image noise
makes the reconstructed image be centrosymmetric
when the twin image noise exists. Therefore the ex-
istence of the centrosymmetry in a reconstructed im-
age can be a criterion for phase-shifting error. In this
paper, we evaluate the centrosymmetry in a recon-
structed image to solve the unknown phase shifts.
Even though this technique is not applicable when
the original object has perfect centrosymmetry and
is positioned on the optical axis, this is evitable by
shifting the original object off the optical axis. This
shift removes the centrosymmetry in the recon-
structed image with the original object, but the clear
separation between the original object image and
twin image noise is unnecessary. In Section 4, we pre-
sent some interesting cases that the evaluation of the
centrosymmetry is very effective for finding the prop-
er solutions of unknown phase shifts.

3. Genetic Algorithm for Eliminating Twin Image Noise

In this section, the genetic algorithm for eliminating
twin image noise using a Zernike expansion is de-
scribed. The degree of the twin image is evaluated
by the evenness of the reconstructed image with

(b)

(©)

Fig. 4. Numerical reconstructions of twin images in Fourier op-
tics at (a) z = -0.2f, (b) z =0, and (c) z = 0.2f.

the help of a Zernike expansion, and the coefficients
of phase-shift bases are optimized genetically.

The original object image and its twin image in
Fourier optics have the centrosymmetric relation
at the forward focal plane. Ifthe original object image
and the twin image have equal intensities, the
reconstructed image can be expanded with two-
dimensional even functions. Therefore the evenness
of the reconstructed image reflects the degree of the
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twin image noise, and, as previously discussed, the
vanishing of the twin image means the diminution
of phase-shifting errors. Zernike polynomials expan-
sion is useful to evaluate the evenness and oddness
in a reconstructed image. In general, Zernike polyno-
mials are applied to express the two-dimensional
aberration composed of even and odd functions. With
the normalization conditions, the real Zernike poly-
nomials could be redefined as

VAT m=0
Ur=< ./2(n+1)/zR?(p)cosmb, m >0, (13)

2(n +1)/zR;™(p) sinm, m <0

where p and 6 refer to cylindrical coordinates. Here,
radial polynomials R;™(p) are defined as

n-m)/2

-1~

N (n—-s)! p
sl((n4+m)/2-s)/((n-m)/2-s)!

(
R;™(p) =
s=0

n-2s (14)

These real Zernike polynomials are classified into
even and odd functions according to the number m.
The real Zernike polynomials with even number m
are even functions, and the real Zernike polynomials
with odd number m are odd functions.

We define the cost function of a genetic algorithm by
evaluating the degree of twin image noise as the sum
of even coefficients over the sum of odd coefficients:

> X

n m=0,£2,4+4---+n

(coefficients of U%)

cost function = —

> (coefficients of U™)

n m=+1,+3--+n

Create an initial population
P={xli=12 }

A \x,‘z ,2,,p
where  x, ={0,-1,-1.0,0,1}

Evaluate the fitness function
N oo :max[cosl(xv)‘x:l,l-mpj

1
£ ;Zm cost(x,)

(15)

k=k+1

Determine the elite
cost (¥) = max [cml(x,),t =1,2,, pj

Mutation
E=F
Determine new elite
cost (%) = max[cost()?)‘cﬂst(x,');z = 1,2,“',]&

l

Sort the population Sort the population
R={xl5> 1) B={x1s2 1)

Exclude the poorest Protect the fittest
Bo={x.x, =12 p-1} Po={%x],[i=1,2,-, p-1}

Crossover
L Giali=120p=t}= (li=1.2.p-1}

Update the population

B, :{x"hy,q\r:I.Z,-‘-,pfl}

Cmr

Fig. 5. Flow of the microgenetic algorithm to eliminate a twin im-
age.
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Ifthe twin image is diminished, the sum of even coef-
ficients decreases down to the sum of odd coefficients,
and the cost function is close to negative one. In this
paper, we calculate the cost function with the real Zer-
nike polynomials up to n = 8.

The genetic algorithm searches local optima
through two distinguished operations, which are mu-
tation and crossover [23]. The mutation is simply a
random search and makes small variations of the
present solution. The crossover operation is proper
in the convex optimization problem since the cross-
over operation is mathematically analogous to the
linear combination of two chromosomes in the float-
ing point coding scheme. The optimization of coeffi-
cients in the linear combination of phase-shift bases
is a typical convex problem. In this paper, we use
the microgenetic algorithm including the subloop
of crossover operations to search the optimized

(b)

Fig. 6. Numerically reconstructed images (a) before and (b) after
the genetic algorithm.
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solutions efficiently. Figure 5 shows the flow of this
microgenetic optimization.

The chromosome in this microgenetic algorithm is
composed of the coefficients in Eq. (7), which is de-
fined as

x; = {Re{ay:},Im{ay; },Re{as; }, Im{as; },- - -,
Re{aNl}, Im{aNl}}. (16)

In this paper, the number of phase-shifting steps is
four, which is a proper number that explains the re-
lationship among phase-shift bases in connection
with phase shifts of interferograms. At the first gen-
eration, the chromosome is set following the coeffi-
cients of the phase-shift bases in a conventional
four step algorithm, like

x; = {0,-1,-1,0,0,1}. (17)

After optimization, resultant phase shifts of inter-
ferograms can be estimated. The optimized object
wave in the phase-shifting interferometry equation,
Eq. (7), is represented as

)i 1.0000 I

[\
—

0.2698
LS89°0

1
1 0.1850 4
(@)
Im |
I, (e, =0.52)
I (e, =2.79) I, (e, =0.47)
Re
I, (e, =—1.89)
(b)

Fig. 8. Relationship between (a) the optimized coefficients of
phase-shift bases and (b) the resultant phase shifts of interfero-
grams.

U, = Z 2a;1Ap[(cos a; — cos ay) cos ¢
i1l

+ (sing; — sinay ) sin ¢). (18)

The error function between the actual object wave
and the optimized object wave is defined as

e=|U,-cUp|
=| Z 2a;1Ap[(cos a; — cos ay) cos ¢

[£38

+ (sina; — sina;) sing] — c(cos @ +jsing)|. (19)

Here, the constant c is a factor to balance the mag-
nitudes of them. Since there are enormous numbers
of pixels in an interferogram and the phase ¢ is dis-
tributed uniformly, we assume that the phase ¢ is an
arbitrary independent value. Therefore the variables
cos ¢ and sing in the spatial average of the error
function could be treated as being independent col-
umns, and real and imaginary values could be re-
garded as independent rows,
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(c) (d)

Fig. 9. Numerically reconstructed images. Parts (a) and (b) show
the images at the focal plane z = 0 and defocused plane z = 0.2f,
respectively, before the optimization. Parts (c) and (d) show the
images at the same positions as (a) and (b) after the optimization.

(e)=(Up-cUol)
Re{ag } Re{as} - Re{aN1}>
=norm
((Im{aﬂ} Im{az;} --- Im{an1}
COSay—COS@; Sinag-—sina;
cosag—cosa; Sinag-—sina; 10
- ~(01))

(20)
X
cosay —Cosay sinay—sina;

where the angle bracket () means the spatial average
of waves, and the function norm(-) of a matrix is de-
fined as a scalar that measures the magnitude of the
elements in the matrix. In Eq. (20), there are four
equations and (N + 1) unknown variables, which
are ay,dq,---,ay, and c. Therefore the resultant
phase shifts, a;, a9, - - -, ay, are solved by minimizing
the spatial average of the error, (e).

4. Experimental Results

In this section, experimental results are presented
and discussed. From the interferometry with un-
known phase shifts, the twin image noise is elimi-
nated by the proposed genetic algorithm and the
unknown phase shifts are estimated. By the use of
the resultant hologram, the reconstructed images
with a liquid crystal spatial light modulator (LC
SLM) are presented.

In this paper, a Coherent Verdi 5W Nd:YAG laser
with a wavelength of 532 nm is used as a light source.
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Fig. 10. Relationship between (a) the optimized coefficients of
phase-shift bases and (b) the resultant phase shifts of interfero-
grams.

We use an XYZ-38 made by Piezosystem Jena as the
piezo stage for phase shifts and a KODAK
MegaPLUS ES1.0/MV with 8bit resolution as the
CCD whose pixel size is 9um. The focal length of
the Fourier lens is 750 mm. The CCD is located at
the backward focal plane that is a hologram plane
as previously mentioned in Fig. 3.

Figure 6 shows the numerically reconstructed
images of the hologram with a plastic doll placed
at the forward focal plane. In Fig. 6(a), the twin im-
age appears definitely, but after processing with the
proposed genetic algorithm, it is certainly lessened,
as shown in Fig. 6(b). Figure 7 shows the evolutions
in the genetic algorithm, where six variables of the
fittest chromosome at each generation and the resul-
tant evenness and oddness in reconstructed images
are shown in Figs. 7(a) and 7(b), respectively. The
evenness and oddness are enumerated as ratios of
the sum of the coefficients in even-function and
odd-function terms to their total sum. The evenness
and oddness become close to each other as the twin
image noise disappears as expected.



Figure 8 shows the relationship between the opti-
mized coefficients of phase-shift bases and the resul-
tant phase shifts of interferograms. In Fig. 8(a), the
absolute value of a complex coefficient defined in
Eq. (7) is noted between two related interferograms
where the value is scaled with the absolute value of
a9; being unity. For example, the absolute value of
a41,0.6857, is presented between I, and I;. These ab-
solute values stand for the contributions of related
phase-shift bases defined in Eq. (7). Figure 7(b)
shows phase shifts of interferograms. The third
phase shift, a3, and the fourth phase shift, a4, are
too close, and the contribution of the base I3 is rela-
tively small as 0.1850. This relationship is a natural
consequence since I43 has relatively little informa-
tion of the object wave, as discussed in Section 2.

In our another experiment, one plastic doll is
placed at the forward focal plane z = 0, and a plastic
train is placed at the defocused plane z = 0.2f. Fig-
ures 9(a) and 9(b) show reconstructed images at
the focal plane and defocused plane, respectively, be-
fore genetic optimization. In Fig. 9(b), the doll is in-
distinguishable, overlapped with the twin image
noise of the train. However, after the optimization,
the twin image noise disappears not only at the for-
ward focal plane as shown in Fig. 9(c), but also at the
defocused plane, and the doll is certainly distinguish-
able as shown in Fig. 9(d).

Figure 10 shows the relationship between the op-
timized coefficients of phase-shift bases and the re-
sultant phase shifts of interferograms from the
results shown in Fig. 9. Here, there exists the same
relationship that the contribution of the base with a
narrow phase-shifting angle between a pair of inter-
ferograms is small. That is, the phase shifts of two
interferograms I, and I; are close to each other,
and the contribution of phase shift base I,; is rela-
tively small.

In these experimental results, the twin image
noise is not clearly separated from the original object
image, and the overlapped portion of twin image
noise cannot be removed by simple blocking as the
synthesis of one-side band Fourier transform holo-
gram. However, the solution of phase shifts with a
genetic algorithm eliminates the twin image noise ef-
fectively, and the portion of original object image
overlapped with twin image noise is distinguishable.

Figure 11 shows the reconstructed images by LC
SLM with previously discussed holograms. In this pa-
per, we use an Epson L3P06X as the LC SLM with pix-
el size 12um and a laser with wavelength 532 nm.
Figures 11(a) and 11(b) are reconstructed images be-
fore genetic optimization and Figs. 11(c) and 11(d) are
reconstructed images after the proposed genetic opti-
mization. The comparison of two groups shows the
distinct improvements in reducing twin image noises.

5. Conclusion

With the proposed phase-shifting interferometry, we
can eliminate twin image noise and find the fittest
solutions in coefficients of the phase-shift bases. In

@ (®)

() (d
Fig. 11. Reconstructed images by LC SLM with previous holo-

grams. Parts (a) and (b) are before the optimization and parts
(c) and (d) are after the proposed optimization.

the reconstruction of a digital hologram from the mea-
surement of phase-shift interferometry, the twin im-
age noise is the result of phase-shifting errors, which
is represented as a nonvanishing conjugate term. We
can reduce the phase-shifting errors indirectly by try-
ing to eliminate the twin image noise in the recon-
structed images. In this paper, the degree of twin
image noise was evaluated by the evenness in recon-
structed images, and the genetic algorithm was ap-
plied to find the fittest solution of the object wave
by controlling the coefficients of the phase-shift bases.
The separation of the evaluation of twin image noise
at the reconstruction plane and the construction of the
object wave from phase-shift bases at the hologram
plane gives more degrees of freedom than conven-
tional methods. By encoding resultant holograms
on a practical LC SLM, we showed that the outcomes
agree with the numerically reconstructed images. Itis
expected that the proposed technique can be useful
not only in the Fourier optics dealt with in this paper,
but also in general Fresnel optics.

This work was supported by the Korea Science and
Engineering Foundation and the Ministry of Educa-
tion, Science, and Engineering of Korea through the
National Creative Research Initiative Program (Ac-
tive Plasmonics Applications Systems).
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