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1. Introduction

Optical sectioning is considered to be one of the
most important topics for three-dimensional (3-D)
imaging in microscopy. High-numerical-aperture ob-
jective lenses are required for high-resolution spatial
analysis, but they have a very limited depth of focus.
Hence it is difficult to image an entire 3-D cell clearly.
Any image of the specimen is contaminated with out-
of-focus information from focal planes above and be-
low the current focus setting [1–3]. Castleman [4]
and Agard [3] proposed the use of nearest-neighbor
planes, i.e., a plane above and a plane below the focal
plane, to remove the out-of-focus noise from the focal
plane in 3-D microscopy. Recently, optical sectioning
in holography was investigated by Leith et al. [5], and
Wiener filtering was proposed by Kim [6] to reduce
the defocus noise in the reconstruction of a 3-D image

from a complex hologram obtained by optical scan-
ning holography (OSH). In this paper, we propose
a novel optical sectioning method for complex holo-
grams recorded by OSH. The hologram is processed
by phase-space filtering using a Wigner distribution
function (WDF) together with the notion of the frac-
tional Fourier transform (FRFT). Using the WDF, we
show that on a given focused plane the focused infor-
mation and the defocused information are separated
in the phase space, and hence a filter in the phase
space can be designed to block the defocused infor-
mation. We show simulation results for slit objects
and rectangular objects to verify our idea.

In Section 2, we briefly review OSH, WDF, and
FRFT. In Section 3, we propose the idea of optical
sectioning using the WDF and FRFT, and computer
simulation results for one-dimensional (1-D) signals
are presented to substantiate the proposed idea. In
Section 4, optical sectioning using WDF is applied
to two-dimensional (2-D) images. Finally, in Sec-
tion 5, we make some concluding remarks.
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2. Optical Scanning Holography, Optical Sectioning,
Wigner Distribution, and Fractional Fourier Transform

A. Optical Scanning Holography and Optical Sectioning

Optical sectioning in holography has been investi-
gated [5], and most recently Wiener filtering has
been proposed to reduce the defocus noise in the re-
construction of a 3-D image from a complex hologram
obtained by OSH [6]. OSH is a recording technique
that can record 3-D holographic information by using
a single 2-D optical heterodyne scan [7]. It has been
applied to many applications, such as 3-Dmicroscopy
[8] and 3-D pattern recognition [9]. In this work, we
investigate a novel optical sectioning technique for
OSH.
In OSH, a complex Fresnel zone plate hologram is

generated and is given by [10]

φðx; yÞ ¼
Z

jOðx; y; zÞj2 ⊗
ko
2πz exp½−

jk0
2z

ðx2 þ y2Þ�dz;
ð1Þ

where the 3-D object is modeled as a collection of pla-
nar intensity distributions, jOðx; y; zÞj2, and z is the
thickness parameter of the object. ⊗ is the 2-D con-
volution operation involving x and y [11]. It is impor-
tant to point out that the complex hologram contains
no twin-image information; i.e., upon reconstruction
of the complex hologram, twin-image noise does not
appear. If jOðx; y; zÞj2 ¼ Iðx; yÞδðz − z0Þ, a planar in-
tensity distribution located along z0, then the com-
plex hologram, according to Eq. (1), is

φðx; yÞ ¼ Iðx; yÞ ⊗ ko
2πz0

exp
�
−
jk0
2z0

ðx2 þ y2Þ
�
: ð2Þ

To reconstruct the hologram, we can illuminate it
with a plane wave to give a diffraction pattern at z
away from the hologram as

φðx; yÞ ⊗ hðx; y; zÞ ¼ Iðx; yÞ

⊗
ko

2πz0
exp

�
−
jk0
2z0

ðx2 þ y2Þ
�
⊗ hðx; y; zÞ; ð3Þ

where

hðx; y; zÞ ¼ −
jko
2πz exp

�
jk0
2z

ðx2 þ y2Þ
�

ð4Þ

is the free-space spatial impulse response in Fourier
optics if we neglect a constant phase factor [11]. A
real image is formed z0 away from the hologram
as, from Eq. (3), we let z ¼ z0 to give

φðx; yÞ ⊗ hðx; y; z0Þ ¼ Iðx; yÞ

⊗
ko

2πz0
exp

�
−
jk0
2z0

ðx2 þ y2Þ
�
⊗ hðx; y; z0Þ

∝ Iðx; yÞ ⊗ δðx; yÞ ¼ Iðx; yÞ: ð5Þ

Note that there is no twin image on the real im-
age plane.

Now, for a 3-D object, if the complex hologram is
illuminated by a plane wave, the sectional image
at a certain depth, say, at zR is given by

szR ¼ φðx; yÞ ⊗ hðx; y; zRÞ

¼ jOðx; y; zRÞj2 þ
Z
z≠zR

jOðx; y; zÞj2

⊗ hðx; y; z − zRÞdz ¼ f ðx; y; zRÞ þ
Z
z≠zR

f ðx; y; zÞ

⊗ hðx; y; z − zRÞdz; ð6Þ

where f ðx; y; zRÞ is the sectional image at z ¼ zR.R
z≠zR

f ðx; y; zÞ ⊗ hðx; y; z − zRÞdz is the term of defocus
noise on the z ¼ zR plane to be filtered or rejected.
The idea of optical sectioning is to reject or filter
this term while keeping the integrity of the sectional
focused image f ðx; y; zRÞ.
B. Wigner Distribution Function and the Fractional
Fourier Transform

The phase-space representation of optical fields
often provides a very powerful analysis tool for opti-
cal signal processing [12–14]. In particular, signal
filtering benefits from the phase-space representa-
tion of optical signals. The central part of the
phase space filtering of optical signals is the WDF.
The WDF Wf ðx1; x2; μ1; μ2Þ of a 2-D complex signal
f ðx1; x2Þ is defined by

Wf ðx1; x2; μ1; μ2Þ ¼
ZZ

f ðx1 þ x01=2; x2

þ x02=2Þf �ðx1 − x01=2; x2

− x02=2Þe−j2πðμ1x
0
1þμ2x02Þdx01dx

0
2: ð7Þ

The WDF is a 4-D distribution function for 2-D opti-
cal signals. The complex signal f ðx1; x2Þ can be recon-
structed by the following reconstruction formula:

f ðx1; x2Þ ¼
1

f �ðxm;1; xm;2Þ

×
ZZ

Wf

�
x1 þ xm;1

2
;
x2 þ xm;2

2
; μ1; μ2

�

× ej2πðμ1ðx1−xm;1Þþμ2ðx2−xm;2ÞÞdμ1dμ2: ð8Þ

The signal reconstruction takes the form of the in-
verse Fourier transform of the WDF. The WDF has
an interesting geometric property for the FRFT of
a signal.
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The ath-order 2-D FRFT of f , FrtðaÞff g, is defined
by [13,15]

FrtðaÞff ðx01; x02Þg ¼ f aðx1; x2Þ ¼
Z

∞

−∞

Kaðx1; x01ÞKaðx2; x02Þf ðx01; x02Þdx01dx02; ð9Þ

where the integral kernel Kaðx; x0Þ is defined by

Kaðx; x0Þ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j × cot χ

p
expðjπ½cot χx2 − 2 csc χxx0 þ cot χx02�Þ for χ ≠ πm

δðx − x0Þ for χ ¼ 2πm
δðxþ x0Þ for χ ¼ 2πm� π

; ð10Þ

and where χ is the angular expression of the FRFT
order a defined by χ ¼ πa=2. The WDF of f aðx1; y1Þ
is given by

Wfaðx1; μ1; x2; μ2Þ ¼ Wfaðx1 cos χ − μ1 sin χ; x1 sin χ
þ μ1 cos χ; x2 cos χ
− μ2 sin χ; x2 sin χ þ μ2 cos χÞ:

ð11Þ

TheWDFof f aðx1; y1Þ is equal to the distribution geo-
metrically rotated by an angle χ. This feature of the
WDF can be exploited for various signal processing
or filtering applications [13].
In general, paraxial optical systems can be equiva-

lently described with a well-defined FRFT with spe-
cific FRFT order and proper scaling factors. In [15],
the linear integral transformation of a paraxial opti-
cal system is represented by the ath-order 2-D FRFT
in the form

f aðx1; x2Þ ¼
Z

∞

�∞

Z
∞

�∞

hðaÞðx1; x2; x01; x02Þf ðx01; x02Þdx01dx02;
ð12Þ

where the transform kernel is given by

hðaÞðx1; x2; x01; x02Þ ¼
cscðχÞ
s2

e−jπ=2

× expðj π
s2

½cotðχÞðx2 þ y2Þ
− 2 cscðχÞðxx0 þ yy0Þ
þ cotðχÞðx02 þ y02Þ�Þ: ð13Þ

The above kernel maps a function f ðx01; x02Þ ¼ð1=sÞf̂ ðx01=s; x02=sÞ into ð1=sÞf̂ aðx1=s; x2=sÞ, where s is
a scaling factor and f̂ aðx1; x2Þ is the ath-order 2-D
FRFT of f̂ ðx1; x2Þ.

Here, for convenience, we assume that the holo-
graphic real image reconstruction of OSH is to be

represented by a single focusing lens. The situation
is shown in Fig. 1. In Fig. 1, the positions at z ¼ z1
and z ¼ z2 indicate two sectional image planes.

We assume that the 3-D intensity distribution of
a 3-D object, jOðx; y; zÞj2, takes the form

jOðx; y; zÞj2 ¼ f 1ðx1; x2; z1Þδðz − z1Þ
þ f 2ðx1; x2; z2Þδðz − z2Þ; ð14Þ

where f 1ðx1; x2; z1Þ and f 2ðx1; x2; z2Þ are the two sec-
tional images.

By substituting Eq. (14) into Eq. (1), we can model
the complex hologram in OSH by

φðx1; x2Þ ¼ f 1ðx1; x2; z1Þ⊕hða1Þðx1; x2; z1Þ
þ f 2ðx1; x2; z2Þ⊕hða2Þðx1; x2; z2Þ; ð15Þ

Fig. 1. Single-lens optical system representing holographic re-
construction of real images by a complex hologram obtained
by OSH. Note that the defocused planes are modeled by the
FFRT, whereas the in-focus plane is represented by a pure Fourier
transform.
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where ⊕ denotes the integral transform operation
given by Eq. (12), and we have replaced the convolu-
tion operation in Eq. (1) by the general linear cano-
nical transform [13].
Similarly, from Eq. (6), the reconstruction process

of the signals sz1ðx1; x2Þ and sz2ðx1; x2Þ can be stated,
respectively, as

sz1ðx1; x2Þ ¼ φðx1; x2Þ⊕hða1Þ�ðx1; x2Þ
¼ φðx1; x2Þ⊕hð−a1Þðx1; x2Þ
¼ f 1ðx1; x2; z1Þ⊕hða1Þðx1; x2Þ
⊕hð−a1Þðx1; x2Þ
þ f 2ðx1; x2; z2Þ⊕hða2Þðx1; x2Þ
⊕hð−a1Þðx1; x2Þ

¼ f 1ðx1; x2; z1Þ þ f 2ðx1; x2; z2Þ
⊕hða2−a1Þðx1; x2Þ; ð16aÞ

sz2ðx; yÞ ¼ φðx; yÞ⊕hða2Þ�ðx; yÞ
¼ φðx; yÞ⊕hð−a2Þðx; yÞ
¼ f 1ðx; y; z1Þ⊕hða1Þðx; yÞ
⊕hð−a2Þðx; yÞ
þ f 2ðx; y; z2Þ⊕hða2Þðx; yÞ
⊕hð−a2Þðx; yÞ

¼ f 1ðx; y; z1Þ⊕hða1−a2Þðx; yÞ
þ f 2ðx; y; z2Þ: ð16bÞ

Let us demonstrate the relationship between the
FRFT order and the geometry of the single optical
system shown in Fig. 1. From [16,17], we can see that
themathematical representation of the optical trans-
form of the simple focusing lens shown in Fig. 1 is
given by

hðx1; x2; x01; x02Þ ¼
−j
λf exp

�
jπ
λf

�
−2ðx1x01 þ x2x02Þ

þ
�
1 −

d
f

�
ðx021 þ x022 Þ

��
; ð17Þ

where f is the focal length of the lens.
If we use proper parameters and neglect the sphe-

rical phase profile in the fractional domain ðx1; x2Þ,
the transform kernel in Eq. (13) becomes Eq. (17)
[see [15], also]. Let z1 and z2 in Fig. 1 be given, respec-
tively, by the symmetric values

z1 ¼ f −Δz; ð18aÞ

z2 ¼ f þΔz: ð18bÞ

By comparing Eq. (13) with Eq. (17), we can obtain
the relationship between the FRFT order and the
geometric factors of the focusing lens as

a1 ¼ 2
π cos

−1

�Δz
f

�
; ð19aÞ

a2 ¼ 2
π cos

−1

�
−
Δz
f

�
¼ 2 − a1; ð19bÞ

where a1 and a2 correspond to the situation of ima-
ging planes at z1 and z2, respectively.

The two sectional images placed on the symmetric
sectional planes are included in the simulation ex-
amples, for convenience. Hence, using Eqs. (19a)
and (19b), the reconstructed signals f 1ðx; y; z1Þ and
f 2ðx; y; z2Þ from Eqs. (16a) and (16b) are obtained, re-
spectively, by

sz1ðx1; x2Þ ¼ f 1ðx1; x2; z1Þ
þ f 2ðx1; x2; z2Þ⊕hð2−2a1Þðx1; x2Þ; ð20aÞ

sz2ðx1; x2Þ ¼ f 1ðx1; x2; z1Þ⊕hð2a1−2Þðx1; x2Þ
þ f 2ðx1; x2; z2Þ: ð20bÞ

3. Optical Sectioning of One-Dimensional Signals

In this section, the basic principle of the proposed
phase-space optical sectioning is elucidated by the
investigation of optical sectioning of two slit objects
displaced along the depth direction. From Eq. (7), the
1-D version of the WDF and the reconstruction for-
mula are given, respectively, by

Wf ðx; μÞ ¼
Z

f ðxþ x0=2Þf �ðx − x0=2Þe−j2πμx0dx0; ð21aÞ

f ðxÞ ¼ 1
f �ðxmÞ

Z
∞

−∞

W

�
xþ xm

2
; μ
�
ei2πμðxþxmÞdμ: ð21bÞ

TheWDFof the ath-order FRFT of f ðxÞ is similarly
given by

Wfaðx; μÞ
¼ Wfaðx cos χ − μ sin χ; x sin χ þ μ cos χÞ: ð22Þ

Let us consider two slit objects, f 1ðxÞ and f 2ðxÞ.
Figure 2 illustrates examples of sectional signals
f 1ðxÞ and f 2ðxÞ and the evolutionary profiles of their
FRFTs with the FRFT order increased from 0 to 1.
f 1ðxÞ is a rectangular function (slit pattern), the
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center of which is placed at x ¼ 0, while f 2ðxÞ is also a
rectangular function with the center at x ¼ 2.
Let us simulate the complex hologram and image

reconstruction without and with the optical section-
ing process proposed in the paper. To clearly prove
the main idea, we also present the optical sectioning
of two comparable cases of two-slit objects without
and with spatial overlapping.

A. Optical Sectioning of Two-Slit Object without
Spatial Overlapping

Figure 3(a) shows sectional signals f 1ðxÞ and f 2ðxÞ
and their relative positions in a 3-D Cartesian coor-
dinate system. In this example, spatial overlapping
does not exist between f 1ðxÞ and f 2ðxÞ. Employing
the focusing lens as shown in Fig. 1 to represent real
image reconstruction in OSH, let us assume that the
complex hologram takes the form of Eq. (15):

φðxÞ ¼ f 1ðx; z1Þ⊕hð3=4ÞðxÞ þ f 2ðx; z2Þ⊕hð5=4ÞðxÞ; ð23Þ

where the FRFT orders of the signals f 1ðxÞ and f 2ðxÞ
that are recorded as a hologram are taken as 3=4 and
5=4, respectively, for simulation purposes. Note that
the FRFTorders are chosen according to the criterion
established in Eq. (19b). In Fig. 3(b), the amplitude
profile of the synthesized OSH complex hologram is
presented.

Within this setup, the reconstructed sectional sig-
nals without optical sectioning processing are given
by, from Eqs. (19a), (19b), (20a), and (20b),

sz1ðxÞ ¼ f 1ðx; z1Þ þ f 2ðx; z2Þ⊕hð0:5ÞðxÞ
¼ f 1ðx; z1Þ þ f 2;0:5ðx; z2Þ; ð24aÞ

sz2ðxÞ ¼ f 1ðx; z1Þ⊕hð−0:5ÞðxÞ þ f 2ðx; z2Þ
¼ f 1;−0:5ðx; z1Þ þ f 2ðx; z2Þ: ð24bÞ

The reconstructed sectional signals sz1ðxÞ and sz2ðxÞ
are shown in Figs. 3(c) and 3(d), respectively. As is
seen in Figs. 3(c) and 3(d), the reconstructed signals
include both the focused signal and the defocused sig-
nal. In Fig. 3(c), the left-hand slit is in focus, whereas
the right-hand slit is defocused. In Fig. 3(d), the
right-hand slit is in focus and the left-hand slit is
out of focus.

Optical sectioning refers to blocking out or reject-
ing defocused signals from reaching the focused
reconstruction sectional plane. We devise an opti-
cal sectioning method using the filtering of the
WDF of the reconstructed signal contaminated
by defocused signals. First, let us calculate the
WDFs of sz1ðxÞ and sz2ðxÞ. Using Eqs. (7), (24a),

Fig. 2. Evolutionary profiles of FRFTs of example sectional sig-
nals (a) f 1ðxÞ and (b) f 2ðxÞ.

Fig. 3. (a) Two slits, (b) amplitude profile of the complex holo-
gram φðxÞ given by Eq. (23), (c) sz1 ðxÞ given by Eq. (24a),
(d) sz2 ðxÞ given by Eq. (24b).
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and (24b), the WDFs of sz1ðxÞ and sz2ðxÞ are derived,
respectively, as

Wf 1þf 2;aðx; μÞ ¼
Z

½f 1ðxþ x0=2Þ

þ f 2;aðxþ x0=2Þ�½f �1ðx − x0=2Þ
þ f �2;aðx − x0=2Þ�e−j2πμx0dx0

¼ Wf 1ðx; μÞ þWf 2;aðx; μÞ

þ 2Re
�
ej4πμx

Z
f 2;a

�
x00

2

�

× f �1

�
2x −

x00

2

�
e−j2πμx

00dx00
�

¼ Wf 1ðx; μÞ þWf 2;aðx; μÞ
þ Cf 1þf 2;aðx; μÞ; ð25aÞ

Wf 1;−aþf 2ðx; μÞ ¼
Z

½f 1;−aðxþ x0=2Þ

þ f 2ðxþ x0=2Þ�½f �1;−aðx − x0=2Þ
þ f �2ðx − x0=2Þ�e−j2πμx0dx0

¼ Wf 1;−aðx; μÞ þWf 2ðx; μÞ

þ 2Re
�
ej4πμx

Z
f 1;−a

�
x00

2

�

× f �2

�
2x� x00

2

�
e−j2πμx

00dx00
�

¼ Wf 1;−aðx; μÞ þWf 2ðx; μÞ
þ Cf 1;−aþf 2ðx; μÞ: ð25bÞ

In our simulations, a in Eqs. (25a) and (25b) is given
by 0.5 as suggested by Eqs. (24a) and (24b). From the
above results, we can identify that the WDF is com-
posed of three terms: the WDF of the focused signal,
the WDF of the defocused signal, and the cross term.
The results ofWf 1þf 2;aðx; μÞ and Wf 1;−aþf 2ðx; μÞ are illu-
strated, respectively, in Figs. 4(a) and 5(a) for a ¼ 0:5.
The three partial terms comprising the WDF are se-
parately shown in Figs. 4 and 5 to aid understanding
of the filtering principle.
Filtering in the phase-space domain is performed

to eliminate the parts of the defocused signal and the
cross term. We simply use a binary filter to perform
filtering. The most useful property of the WDF in
phase space is that the defocused signal is separated
by the geometric rotation. In this example, we can
effectively remove the cross term from the WDF in
phase space as seen in Figs. 4 and 5 by a binary filter
in the phase-space domain. A sectional image is re-
constructed from the filtered WDF.
In Figs. 6 and 7, the WDF filtering and signal re-

construction of f 1ðxÞ from sz1ðxÞ and those of f 1ðxÞ
from sz1ðxÞ are illustrated, respectively. The filtered

WDF, W1, of Wf 1þf 2;aðx; μÞ obtained by a binary filter
is shown in Fig. 6(a). In Figs. 6(b) and 6(c), the unfil-
tered reconstructed signal sz1ðxÞ and the filtered re-
constructed signal �f 1ðxÞ are presented, respectively.
Clearly, in Fig. 6(c), we observe that the slit on the

Fig. 4. (Color online) (a) WDF of sz1 ðxÞ:Wf 1þf 2;a ðx; μÞ, (b)Wf 1 ðx; μÞ,
(c) Wf 2;a ðx; μÞ, (d) Cf 1þf 2;a ðx; μÞ:

Fig. 5. (Color online) (a) WDF of sz2 ðxÞ: Wf 1;−aþf 2 ðx; μÞ,
(b) Wf 1;−a ðx; μÞ, (c) Wf 2 ðx; μÞ, (d) Cf 1;−aþf 2 ðx; μÞ:
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left-hand side has been reconstructed without the de-
focus noise from the slit from the right-hand side
on the reconstruction plane at z ¼ z1. We can also
observe that, for the two-slit object without spa-
tial overlapping, the simple binary filtering in the
phase-space domain leads to successful optical sec-
tioning within the OSH framework. When the re-
construction image plane is focused on z ¼ z2, the
filtering is performed in the same manner. The fil-
tered WDF, W2, of Wf 1;−aþf 2ðx; μÞ obtained by a binary
filter is shown in Fig. 7(a). In Figs. 7(b) and 7(c), the
unfiltered reconstructed signal sz2ðxÞ and the filtered
reconstructed signal �f 2ðxÞ are presented, respec-
tively. Again, we can confirm that the defocused noise
on the focused image plane is alleviated successfully

even by the simple binary filtering in the phase-
space domain, as is evident from Fig. 7(c), where
the slit on the right-hand side has been reconstructed
without the defocus noise from the slit from the left-
hand side.

B. Optical Sectioning of Two-Slit Object with
Spatial Overlapping

Let us consider a more complicated case in which the
two slits are partially overlapped. Figure 8(a) shows
sectional signals f 1ðxÞ and f 2ðxÞ and their relative
positions in a 3-D Cartesian coordinate system.

Let us assume that the complex hologram takes
the form of Eq. (23). In Fig. 8(b), the amplitude pro-
file of the synthesized OSH complex hologram is
presented. Within this setup, the reconstructed sec-
tional signals without optical sectioning processing

Fig. 6. (Color online) WDF filtering and signal reconstruction:
(a) filtered WDF W1 of Wf 1þf 2;−a ðx; μÞ, (b) sz1 ðxÞ and its line trace
along x, (c) filtered signal �f 1 and its line trace along x.

Fig. 7. (Color online) WDF filtering and signal reconstruction:
(a) filtered WDF W2 of Wf 1;−aþf 2 ðx; μÞ, (b) sz2 ðxÞ and its line trace
along x, (c) filtered signal �f 2 and its line trace along x
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are given by the forms of Eqs. (24a) and (24b).
The reconstructed sectional signals sz1ðxÞ and sz2ðxÞ
are shown in Figs. 8(c) and 8(d), respectively. As is
seen in Figs. 8(c) and 8(d), the reconstructed signals
include the focused signal, the defocused signal, and
the interference pattern of two signals in the overlap-
ping region. In Fig. 8(c), the left-hand slit is in focus,
whereas the right-hand slit is defocused. In Fig. 8(d),
the right-hand slit is in focus and the left-hand slit
is out of focus.
The results ofWf 1þf 2;aðx; μÞ andWf 1;−aþf 2ðx; μÞ are il-

lustrated, respectively, in Figs. 9 and 10 for a ¼ 0:5.
The three partial terms comprising the WDF, which
are related to the focused signal, the defocused sig-
nal, and the interference term, are separately shown
to aid in understanding the filtering principle.
In the samemanner as in the previous nonoverlap-

ping example, filtering is performed to eliminate the
parts of the defocused signal and the cross term.
However, we should use a more refined filter struc-
ture than that used for the previous example without
spatial overlapping. Before devising the filter, let us
consider the signal structure of the WDF of two-slit
signals. We basically assume that signals are low
bandwidth, which means the WDF of the focused sig-
nal is concentrated around the space axis (x axis) as
shown in Figs. 9(b) and 10(c).
The principle of the WDF filtering is illustrated

in Fig. 11. For comparison, the WDF filterings
of Wf 1þf 2;−aðx; μÞ and Wf 1;−aþf 2ðx; μÞ are shown in

Figs. 11(a) and 11(b), respectively. The three compo-
site terms of the WDF, the WDF of a focused signal,
theWDFof a defocused signal, and the cross term are
simply drawn in the part indicated by the term
‘WDF’ in Figs. 11(a) and 11(b), respectively.

Fig. 8. (a) Two slits, (b) amplitude profile of the complex holo-
gram φðxÞ given by Eq. (23), (c) sz1 ðxÞ given by Eq. (24a),
(d) sz2 ðxÞ given by Eq. (24b).

Fig. 9. (Color online) (a) WDF of sz1 ðxÞ:Wf 1þf 2;a ðx; μÞ, (b)Wf 1 ðx; μÞ,
(c) Wf 2;a ðx; μÞ, (d) Cf 1þf 2;a ðx; μÞ.

Fig. 10. (Color online) (a) WDF of sz2 ðxÞ: Wf 1;−aþf 2 ðx; μÞ,
(b) Wf 1;�a

ðx; μÞ, (c) Wf 2 ðx; μÞ, (d) Cf 1;�aþf 2 ðx; μÞ.
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The most useful property of the WDF in the phase-
space domain is that the defocused signal is sepa-
rated by the geometric rotation. We can eliminate
the part outside the rectangular dashed lines while
keeping everything inside the rectangular dashed
lines as indicated in Figs. 11(a) and 11(b). By simple
binary filtering, most of the rotated WDF of the de-
focused signal and the cross term with relatively
wide frequency bandwidth can be rejected. This is
the filtering used in the previous example when
the two slits are spatially separated. In the case of
partial overlap of the two slits, the different WDFs
share the rotation center region. As a result, the
WDF around the center has the larger values, the
sum of the three terms. Hence it is necessary to
damp the WDF around the cross area around the
center. Thus the filter has a stepwise structure to
apply different weights to the cross area around
the center and the other areas of the WDF. Therefore
the filter is designed to have a Gaussian window pro-
file along the frequency axis (μ axis). The filter struc-
tures with these three elements forWf 1þf 2;−aðx; μÞ and
Wf 1;−aþf 2ðx; μÞ are represented in the x − μ −mW coor-
dinate system (filter plane) in the parts indicated by
the term ‘Filter’ in Figs. 11(a) and 11(b), respectively.
The mW axis denotes the magnitude of the filter
weight. For example, the top part of the dashed rec-
tangular area has the largest weight as shown in
Fig. 11. Hence, the three truncated Gaussian win-
dows are multiplied by the WDFs to produce the
filtered WDFs. This operation is represented by
the 3-D projection of the filter structure in the ‘Filter’
part to the ‘WDF’ plane. We can effectively remove
the cross term and the defocused term from the
WDF in phase space by means of the devised filter
structure in the phase-space domain.
In Figs. 12 and 13, the WDF filtering and signal

reconstruction of f 1ðxÞ from sz1ðxÞ and those of
f 1ðxÞ from sz1ðxÞ are illustrated, respectively. The fil-
ter structure composed of three truncated Gaussian
windows and the filtered WDF of Wf 1þf 2;aðx; μÞ

obtained by the filter are shown in Figs. 12(a) and
12(b), respectively. In Figs. 12(c) and 12(d), the unfil-
tered reconstructed signal sz1ðxÞ and the filtered re-
constructed signal �f 1ðxÞ are presented, respectively.
We can see that the devised filtering in the phase
space leads to successful optical sectioning within
the OSH framework. When the focus is on z ¼ z2,
the filtering is performed in the same manner. The
filter structure and filtered WDF of Wf 1;−aþf 2ðx; μÞ ob-
tained by the filter are shown in Figs. 13(a) and 13(b),
respectively. In Figs. 13(d) and 13(c), the unfiltered
reconstructed signal sz2ðxÞ and the filtered recon-
structed signal �f 2ðxÞ are presented, respectively.
The defocused noise on the focused image plane is
alleviated successfully by the proposed filtering in
the phase space.

4. Optical Sectioning of Two-Dimensional Signals

In this section, the phase-space optical sectioning
method is extended to 2-D signals. In general, the

Fig. 11. (Color online) Concept of WDF filtering: filtering of
(a) Wf 1þf 2;−a ðx; μÞ and (b) Wf 1;−aþf 2 ðx; μÞ.

Fig. 12. (Color online) WDF filtering and signal reconstruc-
tion: (a) filter structure, (b) filtered WDF W1 of Wf 1þf 2;−a ðx; μÞ,
(c) sz1 ðxÞ and its line trace along x, (d) filtered signal �f 1 and its line
trace along x.
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WDF of 2-D signal is a 4-D distribution. Although
filtering of general 4-D Wigner signals should be
further investigated in the aspects of algorithm
and computation, in this paper we present the
feasibility of the WDF filtering for optical section-
ing of 2-D signals. Here we examine rectangular
aperture signals f ðx1; x2Þ and gðx1; x2Þ given, respec-
tively, by

f ðx1; x2Þ ¼ f 1ðx1Þf 2ðx2Þ; ð26aÞ

gðx1; x2Þ ¼ g1ðx1Þg2ðx2Þ; ð26bÞ

which are separable signals shown in Figs. 14(a) and
14(c), respectively. For convenience, gðx1; x2Þ is sim-

ply the shifted version of f ðx1; x2Þ. The ath-order
2-D FRFTs of f ðx1; x2Þ and gðx1; x2Þ are also separable
signals, as seen in Eq. (9). In Figs. 14(a) and 14(b),
the signal f ðx1; x2Þ and its −0:5-order FRFT
f −0:5ðx1; x2Þ are shown, respectively. In Figs. 14(c)
and 14(d), gðx1; x2Þ and its 0:5-order FRFT
g0:5ðx1; x2Þ are shown, respectively. The recon-
structed sectional signals without optical sectioning
processing, f ðx1; x2Þ þ g0:5ðx1; x2Þ and f −0:5ðx1; x2Þ þ
gðx1; x2Þ are presented in Figs. 14(e) and 14(f), respec-
tively. In the 2-D signal example, spatial-overlapping
exists between f ðx1; x2Þ and gðx1; x2Þ as in the pre-
vious 1-D signal example.

For the sectioning, first the WDF of the mixed sig-
nal is inspected. The WDFs of the sums of f ðx1; x2Þ

Fig. 13. (Color online) WDF filtering and signal reconstruction:
(a) filter structure, (b) filtered WDF W2 of Wf 1;−aþf 2 ðx; μÞ,
(c) sz2 ðxÞ and its line trace along x (d) filtered signal �f 2 and its line
trace along x.

Fig. 14. (Color online) Example 2-D signals: (a) f ðx1; x2Þ,
(b) f −0:5ðx1; x2Þ, (c) gðx1; x2Þ, (d) g0:5ðx1; x2Þ,
(e) f ðx1; x2Þ þ g0:5ðx1; x2Þ, (f) f −0:5ðx1; x2Þ þ gðx1; x2Þ.
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and gaðx1; x2Þ and of f aðx1; x2Þ and gðx1; x2Þ are given,
respectively, by

Wfþgaðx1; x2; μ1; μ2Þ ¼
ZZ

½f ðx1 þ x01=2; x2 þ x02=2Þ þ gaðx1 þ x01=2; x2 þ x02=2Þ�½f �ðx1 þ x01=2; x2 þ x02=2Þ

þ g�aðx1 þ x01=2; x2 þ x02=2Þ�dx01dx02
¼ Wf 1ðx1; μ1ÞWf 2ðx2; μ2Þ þ Cf 1;g�1;a

ðx1; μ1ÞCf 2;g�2;a
ðx2; μ2Þ þ Cg1;a;f �1

ðx1; μ1ÞCg2;a;f �2
ðx2; μ2Þ

þWg1;aðx1; μ1ÞWg2;aðx2; μ2Þ; ð27aÞ

Wfaþgðx1; x2; μ1; μ2Þ ¼
ZZ

½f aðx1 þ x01=2; x2 þ x02=2Þ þ gðx1 þ x01=2; x2 þ x02=2Þ�½f �aðx1 þ x01=2; x2 þ x02=2Þ

þ g�ðx1 þ x01=2; x2 þ x02=2Þ�dx01dx02
¼ Wf 1;aðx1; μ1ÞWf 2;aðx2; μ2Þ þ Cf 1;a;g�1

ðx1; μ1ÞCf 2;a;g�2
ðx2; μ2Þ þ Cg1;f �1;a

ðx1; μ1ÞCg2;f �2;a
ðx2; μ2Þ

þWg1ðx1; μ1ÞWg2ðx2; μ2Þ: ð27bÞ

Similar to the situation in the 1-D case as shown in
Eqs. (24a) and (24b), we set a ¼ 0:5 in Eq. (27a) and
a ¼ −0:5 in Eq. (27b) for simulations.
It is noted that the WDF of the sum of two separ-

able signals is not separable. However, in this exam-
ple, the separability of the signals can be exploited
for the filtering. Considering Eqs. (27a) and (27b),
we can see that the separated parts, f 1ðx1Þ and
f 2ðx2Þ, of the signal f ðx1; x2Þ can be reconstructed
in the 2-D phase space, not in the 4-D phase space.
The filtering process for the separable 2-D signal

is as follows. First, with x2 and μ2 fixed, the WDF
W1 of f ðx1; x2Þ þ gaðx1; x2Þ is calculated:

W1 ¼ Wfþgaðx1; x2; μ1; μ2Þ
¼ a1Wf 1ðx1; μ1Þ þ b1Wg1;aðx1; μ1Þ

þ 2Re½c1Cf 1;g�1;a
ðx1; μ1Þ�: ð28Þ

In this example with the FRFT order parameter
a ¼ 0:5, x2 and μ2 are set to 0. The values of x2
and μ2 are selected to maximize the ratios of a1=b1
and a1=c1. This operation damps the undesired terms
effectively. In this example, for x2 ¼ 0 and μ2 ¼ 0, a1,
b1, and c1 are obtained, respectively, by a1 ¼
Wf 2ð0; 0Þ ¼ 10, b1 ¼ Wg2;0:5ð0; 0Þ ¼ 2, and c1 ¼
Cf 2;g�2;0:5

ð0; 0Þ ¼ 2. In the same manner, we can calcu-
late the WDF W2 of f ðx1; x2Þ þ gaðx1; x2Þ with x1 and
μ1 set to 0.

The calculation results for W1 and W2 are shown
in Figs. 15(a) and 15(b), respectively. We can

reconstruct the filtered 1D signals ~f 1ðx1Þ and
~f 2ðx2Þ by using the 1-D signal filtering procedure
described in Section 3.

Finally, the reconstructed 2-D signal ~f ðx1; x2Þ ¼
~f 1ðx1Þ~f 2ðx2Þ is obtained. In the same manner,
~gðx1; x2Þ ¼ ~g1ðx1Þ~g2ðx2Þ can be calculated. The fil-
tering results are presented in Fig. 16. In
Figs. 16(a) and 16(b), the unfiltered reconstructed
f ðx1; x2Þ þ g0:5ðx1; x2Þ and the filtered signal
~f ðx1; x2Þ ¼ ~f 1ðx1Þ~f 2ðx2Þ are presented, respectively.
In Figs. 16(c) and 16(d), the unfiltered recon-
structed f −0:5ðx1; x2Þ þ gðx1; x2Þ and the filtered signal
~gðx1; x2Þ ¼ ~g1ðx1Þ~g2ðx2Þ are presented, respectively.

Fig. 15. (Color online) WDFs of f ðx1; x2Þ þ g0:5ðx1; x2Þ at specific
phase-space points (a) ðx2; μ2Þ ¼ ð0; 0Þ and (b) ðx1; μ1Þ ¼ ð0; 0Þ.
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This example of 2-D signal sectioning shows that
it is feasible for the defocused noise on the focused
image plane to be alleviated successfully even by
the filtering in the phase space.

5. Concluding Remarks

We have proposed a novel optical sectioning method
using phase-space filtering with the introduction of
the fractional Fourier transform to represent defo-
cused information. The proposed technique is useful
for a complex Fresnel zone plate hologram obtained
by optical scanning holography, as the complex holo-
gram does not contain any twin-image information.
Simulations have been performed to demonstrate
optical sectioning successfully with 1-D slit-type ob-
jects and 2-D rectangular-type objects. The proposed
concept of phase-space filtering could possibly be ex-
tended and applied to more general 2-D images with
some refinement in terms of computational complex-
ities. In our results on 2-D objects, however, we have

found that the proposed technique can even some-
what resolve occlusion, which means that the sec-
tional image can be reconstructed even though the
objects overlap.

This work was supported by a Korea Research
Foundation grant funded by the Korean government
(Ministry of Education and Human Resources Devel-
opment, KRF-2005-214-D00290)
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