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We propose a novel electromagnetic analysis scheme for crossed nanophotonic structures. The developed
scheme is based on the mathematical modeling with the local Fourier modal analysis and the generalized
scattering-matrix method. The mathematical Bloch eigenmodes of two-port block and four-port intersection
block structures are analyzed by the local Fourier modal analysis. The interconnections of two-port blocks and
four-port intersection block are described by the generalized scattering-matrix method. This scheme provides
the linear system theory of general crossed nanophotonic structures. © 2008 Optical Society of America
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1. INTRODUCTION

The mathematical modeling is a critical issue in nanopho-
tonics. The dynamics of electromagnetic fields on a nanos-
cale can be described by the vectorial solution of the Max-
well equations. Therefore, mathematical modeling and
numerical analysis methods for solving the Maxwell
equations have been researched intensively. At present,
there are various established methods of obtaining the
numerical solutions of the Maxwell equations. In general,
the methods can be classified into two types of space-
domain and spatial-frequency-domain methods. The
space-domain methods represent the Maxwell equations
as partial differential equations in space domain and ana-
lyze the numerical values of the field distributions at spa-
tial points. On the other hand, the spatial-frequency-
domain methods represent the Maxwell equations as
algebraic linear equations in the spatial-frequency do-
main and analyze the Fourier representation of the field
distribution. In the point of view of mathematical model-
ing, the spatial-frequency-domain method can give the
more systematic and flexible approach than the space-
domain methods. A refined linear system theory of com-
plex electromagnetic structures can be built based on the
spatial-frequency-domain method. In the spatial-
frequency-domain method, the mathematical Bloch
modes represented by the pseudo-Fourier series span the
eigensystems of the Maxwell equations. The electromag-
netic field distributions in a finite region are expressed by
the superposition of the Bloch eigenmodes with specific
coupling coefficients determined by the boundary condi-
tions. Within this framework, the Bloch eigenmodes con-
stitute the system basis and the coupling coefficients of
the Bloch eigenmodes, which constitute spectral informa-
tion, are variables to be processed. Recently, this linear
system approach became much required in nanophoton-
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ics. Large-scale system-level integration of nanophotonic
devices [1-6], i.e., nanophotonic network, is considered as
an ultimate point of the advances in nanophotonics. The
use of conventional methods for analyzing nanophotonic
networks is almost impossible without some specific inno-
vations because of the limitation of computing resources.
The nanophotonic networks are composed of many and
various photonic devices. To study the collective dynamics
of such nanophotonic networks, the system theory of the
nanophotonic networks must be built. During the past de-
cades, one of the spatial-frequency-domain methods, the
Fourier modal method (FMM) [7-11] has been intensively
researched and many challenging problems related to the
foundation of the FMM have been overcome [12-19]. At
present, the FMM is considered one of the most efficient
and accurate electromagnetic analysis tools for optics and
photonics. With the development of the FMM, the
scattering-matrix method (SMM) has been developed as a
stable wave propagating algorithm in multilayered struc-
tures [20-24]. The scattering matrix ( S matrix) of an
electromagnetic structure is actually a linear system rep-
resentation of that structure with the Bloch eigenmodes
as the system basis. We can have a view of any linear
electromagnetic structure as a linear system having its
own S matrix.

We can believe that a systematic linear system theory
of complex network structures can be built with the SMM
and the FMM. The establishment of the linear system
theory of the electromagnetic structure on a nanoscale
can be considered as a main target of the mathematical
modeling in present nanophotonics. However, for achiev-
ing the objective, the conventional FMM and SMM must
be refined and extended. In this paper, as a prerequisite
step for constructing a general linear system theory of
general nanophotonic networks, we propose a mathemati-
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cal modeling of crossed nanophotonic structures with the
development of the local Fourier modal analysis (LFMA)
and the generalized SMM (GSMM).

This paper is organized as follows. In Section 2, the
four-port crossed nanophotonic structures are defined. In
Section 3, the LFMA of two-port blocks is described. In
Section 4, the LFMA of four-port blocks is described. In
Section 5, the GSMM is formulated for constructing four-
port crossed photonic structures. In Section 6, concluding
remarks and perspectives of the proposed theory are
given.

2. FOUR-PORT CROSSED NANOPHOTONICS
STRUCTURES

In the near future of nanophotonics, global structures
such as networks and circuits will become a main issue
based on previous and present active research on local
structures such as individual devices and elements. In
Fig. 1, the collective system of such nanophotonic devices,
more generally photonic blocks, is presented. Let us call
this kind of system a nanophotonic network. The func-
tional photonic blocks are represented by geometric fig-
ures: circle, rectangles, and so on. The interaction of the
blocks is denoted by bidirectional arrows between photo-
nic blocks such as two-port blocks, four-port cross blocks,
two-port light sources, and general blocks having more
ports.

At present, such a network or global phenomena cannot
be correctly, or at least reasonably, analyzed without im-
practical huge computing resources. Although the optical
fields act in accordance with the definite Maxwell equa-
tions, the information needed to represent the optical
field is too huge for us to directly analyze. Therefore, the
development of rigorous and efficient mathematical mod-
eling of nanophotonic networks is an urgent and impor-
tant theme at present.

For this, we can take a technical approach to deal with
such global structures with an intuitive assumption.
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First, in practical nanophotonic networks, optical fields
are usually localized on engineered structures or devices
such as waveguides and resonators. Thus we can obtain a
reasonable solution of the Maxwell equations around
these local areas where the optical field energy is not neg-
ligible. Then, we should have a systematic mathematical
model to describe the relationship and interactions be-
tween each locally analyzed region.

This concept is the motivation for the development of
the linear system theory of nanophotonic networks. In
this paper, as a prerequisite step for constructing a gen-
eral linear system theory, the electromagnetic analysis on
the basic element, four-port crossed nanophotonic struc-
ture, is investigated.

Figure 2 shows a schematic of a four-port cross block.
As an analysis example, a two-dimensional photonic crys-
tal cross-waveguide structure [2] shown in Fig. 2(a) is
chosen. This cross-waveguide structure is composed of
five subparts: ports 1-4 and the intersection cross block.
The complete characterizations of the four-port cross
block and the two-port block are represented by the 4
X 4 and the 2 X2 S matrix, respectively.

For convenience, let the S matrices of two-port blocks
placed along the transverse direction and those placed
along the longitudinal direction be distinguished by

T R

S= (@ «>, (1a)
R T
T, R,

§= (RT Ti)‘ (1b)

The 4 X4 S matrix of a four-port cross-block is defined by

S= . (2)
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Fig. 1. (a) Schematic of nanophotonic network, (b) basic elements and interconnections.
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Fig. 2. (Color online) (a) Photonic crystal cross waveguide struc-
ture, (b) S-matrix diagram of the photonic crystal cross wave-
guide structure.

In two-dimensional geometry, four vertex points
(x,,2_), (x4,2,), (x_,z_), and (x_,z,) define the four bound-
aries where the cross block contacts ports 1-4. Figure 2(b)
shows the S-matrix diagram of photonic crystal cross-
waveguide structure.

For building the mathematical modeling of the de-
scribed nanophotonic structures, the following basic ele-
ments should be prepared.

(1) S matrices, Bloch eigenmodes represented by
pseudo-Fourier series, coupling coefficient operators of
two-port blocks placed along the transverse direction and
the longitudinal direction.

(i1) S matrices, Bloch eigenmodes represented by
pseudo-Fourier series, coupling coefficient operators of
four-port blocks.
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(iii) Generalized recursion formulas for interconnect-
ing the S matrices of composing blocks and updating in-
ternal coupling coefficients operators of each block.

The analysis will be processed step-by-step. After com-
pleting the analysis of the 4 X4 S matrix of the four-port
intersection block, ports 1-4 will be connected to the in-
tersection block consecutively. At each stage, the S matri-
ces of the combined blocks will be updated. The detail of
this interconnection will be manifested in Section 5.

The proposed modeling scheme is made up of two key
subtheories, LFMA and GSMM. The main task of the
LFMA is to analyze the Bloch eigenmodes as the form of
the pseudo-Fourier representation and to manifest the S
matrix and the coupling coefficient matrix operator of the
block. Conventional FMM is only applied to a one-
dimensionally layered structure, i.e., a two-port block
structure. The application of the conventional SMM is re-
stricted to two-port block structures with the combination
with the FMM. This property has been considered an in-
herent limitation of the FMMs. However, the proposed
LFMA overcomes this limitation and can successfully
analyze the four-port cross blocks with four boundaries.
Furthermore, the interconnections of two- and two-port
blocks, four- and two-port blocks, and four- and four-port
blocks are systematically described by the proposed
GSMM.

In the LFMA, the local Fourier representation of inter-
nal Bloch eigenmodes is identified as the mathematical
basis of internal electromagnetic field distributions and
the coupling coefficients of each eigenmode are deter-
mined to satisfy the transverse field continuation condi-
tions at the given four boundaries. The relationships be-
tween coupling coefficients of Bloch eigenmodes within
each block in the interconnected structures are described
by the GSMM. The proposed analysis of four-port crossed
nanophotonic structures provides a basic framework for
the general analysis of complex large-scale integrated
nanophotonic networks.

3. LOCAL FOURIER MODAL ANALYSIS OF
TWO-PORT BLOCKS

In this section, the LFMA of two-port blocks is described.
The S matrix and coupling coefficient matrix operator of
two-port blocks are analyzed by the LFMA.

The Bloch eigenmodes of the Maxwell equations take
the form of the pseudo-Fourier series

Ey=exp(jkygx+ by + k. 2)Ei(x,y,2),  (32)

H,, = exp(jlkyox + ky oy + k. 02) Hy(x,3,2),  (3b)

where the mode envelops E,(x,y,z) and Hj(x,y,z) are pe-
riodic functions with respect to x, y, and z and k indicates
the wave vector (&, o,k,,k. ). Let us consider a @-layer
multilayer block M:@) with the longitudinal size of A, as
shown in Fig. 3(a). The S-matrix SU® and coupling coef-
ficient matrix operators 6a and éb give a complete char-

acterization of the electromagnetic properties of the block
[see Fig. 3(b)].
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Fig. 3. (Color online) (a) Multilayer structure and (b) S-matrix
and coupling coefficient matrix operator.

In addition, we can extract the Bloch eigenmodes by
solving the Bloch-mode eigenvalue equation [25] formu-
lated by the rigorous coupled-wave analysis (RCWA)
method and the extended scattering-matrix method
(ESMM) [11,20]. In Fig. 4(a), the concept of the Bloch-
mode computation with the ESMM is illustrated. The
field profile of a Bloch eigenmode at the right boundary
takes the form of the field profile at the left boundary
multiplied by the eigenvalue B=exp(jk, () as indicated in
Fig. 3(b).
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Let the Fourier spectra of the right- and left-direction
propagating portions of a Bloch eigenmode at the left
boundary denoted by w and w, respectively. Then w and w
should satisfy the Bloch mode condition - -

pi] [(TL@  ROUQ\[ 5
=l = _ | (4a)
W | \ROQ  Foe /|l
where T1@, RLQ R1LQ and TQ are the S-matrix

components of the multilayer M@ Equation (4a) can be
manipulated to the eigenvalue equation with g3 as the ei-

genvalue:
TR 0 \[w I _RWO\[s
- ~|=8 _ ~|. (4b)
RLQ  -I)|w 0 _Tue/|w
Let the gth eigenvalue and eigenvector of Eq. (4b) be
denoted by B, and (w,,,). Then the internal coupling co-
efficient of the gth Bloch eigenmode is determined by,
from Eqgs. (11e) and (11f) of [20],

C,= aa@g + Bgabl‘?g‘ (5)

In practical implementation, for confirming the nu-
merical stability in solving Eq. (4b), a two-step eigenvalue
analysis should be adopted. Let the eigenvalues of the
positive and negative eigenmodes be denoted by pB*
=exp(jk; ) and B =exp(jk; ), respectively. The absolute
value of the eigenvalue of negative eigenmode S~ can be
so large to exceed the precision limitation of practical
computers. As illustrated in Fig. 4, the eigenvalue equa-
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Fig. 4. Schematics of eigenvalue equations of (a) positive and (b)
negative Bloch eigenmodes.
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tions for obtaining positive and negative eigenmodes are

taken, respectively, as
RO\ 5]
, (6a
_ T (6a)

T1L.Q 0 I
gee  _1)|a]|% \o

1/ TLO 0\l I _ROWO\[g]
—| = sl = _ . (6b)
g\r@ -1/|w| \o _Tue)|d]
Now, the obtained Bloch eigenmode holds the conven-
tional form of the RCWA, i.e., separate two-dimensional

pseudo-Fourier representation at each staircase layer
with its own coupling coefficients given as

g
18418,

18118,

(1,Q) _ E(LQ) (1,@)
E(q)g 2 E [x (q),x,mng(z) +yE(q),y mng(z)

+2E3?@)lexplj(tyx + k)], (Ta)

(1,Q) _ (1,@) (1,@)
H(q),g 2 2 [xH(q),x mng 2) +yH(q),y mng(z)
+zH( Y, (2)1explj(Fy mx + oy )], (7b)

where q is the layer index for 1=¢=@ and x, y, and z in-
dicate unit directional vectors. It is noted that the Fourier
coefficients of the electric field and the magnetic field in
Egs. (7a) and (7b) are functions of the z variable. Let d,
denote the thickness of the gth layer and /,, ,,,,, be defined
by 1, pim=dp+d,s1+ dyypn. Using the simple discrete
Fourier transform (DFT), we can find the equivalent Fou-
rier expansion of these z-variable dependent Fourier coef-
ficients as

exp(—jkENELY . ()

exp(—jk% )Eg)i{tmng(z)

fOrOSZSZLI

for 11,1 =z= l1,2

exp(- jk(g))E%)‘{Zmng( ) forlig =z=l,
~ E E%), ., exp(iG. 2), 8)

where G, ;, is the z-direction reciprocal vector defined by
G, ,=(27/A)p. By the same manner, we can find the
equivalent Fourier expansion of other Fourier coeffi-
cients. Therefore, the gth Bloch eigenmode takes the
pseudo-Fourier representation as

M N H

S X X BB

m=-M n=-N p=-H

E(g) x,y,2) =

+ B, 2)exp( (it + By iy + £E)2)),
(9a)
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Hywyz)= 2 2 2 (HE,, x+HE, Ly
m=-M n=-N p=-H -

+H, . 2)exD(i (b + By iy + kE)2)),
(9b)

where k‘g is defined by k(g) k(g)+277p/A This pseudo-
Fourier representatlon isa ba31s for unfolding the LFMA
of the four-port intersection block in Section 4, which is a
key feature of the proposed LFMA mostly distinguished
from the conventional expressions, Eqs. (7a) and (7b), of
the conventional FMM. After obtaining the eigenvalues
and eigenvectors of the main eigenvalue equation (4b),
the obtained eigenmodes must be classified into two cat-
egories, positive (forward) and negative (backward)
modes, with respect to eigenvalues holding one of the
forms, ]k(g)—a(g) +jb®), _]k(g)—a(g)—Jb(g) ]k(g) -a® +jb®),
and]k(g) = a® -jb® where a® >0 and 5© > 0. The eigen-
modes with eigenvalues of ]k(g)—a(g)+ jb® or ]k(g)—a(g)
—jb® are referred to as negatlve mode and the notation
k(zg()] with the minus superscript is used to indicate the
negative mode. The eigenmodes with eigenvalues of jk(g)
=—a®+;b® and ]k(g =-a®—jb® are referred to as posi-
tive mode and the notation k(g())+ with the plus superscript
is used to indicate the positive mode. In particular, the
eigenmodes with pure real eigenvalues of Jk(g) =7b%¥ and
jkE)=—jb® with a® =0 are classified to the positive mode.
The numbers of the positive and negative modes are de-
noted by M* and M, respectively. The sum of M* and M~
iIsM*+M =4(2M +1)(2N +1). With these conventions, the
gth positive (E,),H;) and negative (E,,H ) eigen-
modes are represented as, respectively,

Ei(,g)(x’y’z)= 2 E 2 (Ea(zgr)r:npx-"E(gzr:npy

m=-M n=-N p=-M

+EE) 2)exp(jlky nx +ky ,y + kE)2)),

2mn.p?-
(10a)
Hiwyze)= 2 X X HE: x+HO,
m=-M n=-N p=—M -
+ Hggr)rzztnp )exp(jky, it + ky ,y + kE)%2)).
(10b)

The pseudo-Fourier representation of the Bloch eigen-
modes is the essential factor in the modeling and analysis
of four-port crossed nanophotonic structures that will be
described in Section 4. Hereafter, the Bloch eigenmodes
represented by the pseudo-Fourier series are adopted as
the mathematical basis of the electromagnetic field distri-
butions.

As an example of the described LFMA, the Bloch eigen-
mode analysis of a two-dimensional photonic crystal
waveguide structure [26-29] is presented in Fig. 5. Figure
5(a) shows a two-dimensional photonic crystal waveguide.
The period of the circular rod of the photonic crystal is de-
noted by a. The diameters of the rod, wavelength, and re-
fractive index of the rod are set to 0.4a, 2.44a, and 3.4,
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Fig. 5. (Color online) (a) Two-dimensional photonic crystal waveguide and the guided Bloch eigenmode: (b) y-polarization electric field
distribution, (c¢) x-polarization magnetic field distribution, (d) z-polarization magnetic field distribution.

respectively. This waveguide structure is actually a
single-mode waveguide. This point can be confirmed by
analyzing the obtained eigenvalues. In Figs. 5(b)-5(d), the
y-polarization electric field, x-polarization magnetic field,
and z-polarization magnetic field distributions of the fun-
damental mode are presented, respectively.

For convenience, let the two-port blocks be placed along
the transverse direction and those placed along the longi-
tudinal direction be distinguished by the prefixes « and S,
respectively. Figure 6 illustrates three kinds of « blocks:
two-port « block with finite size, two-port half-infinite «
block with right boundary, and two-port half-infinite «
block with left boundary. On the other hand, Fig. 7 illus-
trates three kinds of B blocks: two-port B8 block with finite
size, two-port half-infinite B8 block with upper boundary,
and two-port half-infinite B8 block with lower boundary.

In the representation of the field distributions in «
blocks, the subscript « is also used. The reciprocal vectors

of @ modes are denoted by (ka,x,m,ka,y’n,k(g) ) and defined

b a,z,p
y
21 Qa oA
By kL) = | oo = by + —n, k& + —p |
(a,, @y, a,z,p) ( 0 Txm y,0 Tyn P sz
(11)

Then let us represent the Bloch eigenmodes of two-port
a blocks as

M N M
B y2)= 2 2 X

m=-M n=-N p=—M

X(E®* x4 E(f;,imnpy + E(f)ztmnpi)

ax,m,n,p”

X eXP((k o + Ry + R E5H(2 = 22))),
(12a)

M N M
I_{z,(g)(xvyvz) = E E E

m=-M n=-N p=-M

X (H(ﬂﬁﬁ);mﬂypx + H(Eﬁgffm,n,py + H(Eﬁf):m,n,pz)

Xexp(i(ka,x,mx + ka,y,ny + ka(:i,);p(z - ZI)))
(12b)

In the representation of the field distributions in B
blocks, the subscript 8 is used. The reciprocal vectors of 8
modes are denoted by (k%fl,m,k gy.n-kpzp) and defined by
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Fig. 6. (Color online) (a) Two-port « block with finite size, (b)
two-port half-infinite « block with right boundary, (c) two-port
half-infinite a block with left boundary.
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The Bloch eigenmodes of two-port B blocks are repre-
sented by the pseudo-Fourier series with the subscript 8
as

M N M
Ehowy2)= 2 X X

m=-M n=-N p=-M

XE i+ Efyinn s + Bz )

Xexp(]’(k(ifm(x —x3) + Ry Y +Rp 7)),
(14a)

M N M

}_IZ,(g)(xryrz) = E 2 2

m=-M n=-N p=—M

XL %+ H ¥ + HE o 2)

Xexp(j(kE)s, (x —x5) + kg, .y + kg, 2)).
(14b)

Let us note the meanings of the local coordinate of the
B block, (x',y’,z’') shown in Fig. 7(a). In practical compu-
tation, B blocks are analyzed on the local coordinate
(x",y",2") for convenience. When converting the informa-
tion obtained in the local coordinate (x’,y’,z’) to those in
the default coordinate (x,y,z) a careful consideration of
the following relations is required:

e'(x'y",z") =e(z"y',-x'), (15a)
M’(x',y’,zl)=M(2”,y’,—x'), (15b)
(Ex,m,n,p’Ey,m,n,p5Ez,m,n,p) = (Ez’,p,n,—m’Ey’,p,n,—m>_ Ex’,p,n,—m)5

(15c¢)

(H,

,m,n,p’Hy,m,n,p’Hz,m,n,p) = (HZ’,p,n,—m’Hy’,p,n,—m’
—Hy o m). (15d)

Next, the S matrices of two-port blocks are derived. In
Fig. 8, the bidirectional characterization of a two-port «
block with the left boundary at z=z_ and right-boundary
at z=z, is schematically presented. The S-matrix compo-
nents are obtained by the following bidirectional charac-

}Z +
x’

(@

ortSI =% .
R, Sz(n R‘J
T } R, T,
Yoo %port4% .
port3
(® (©)

Fig. 7. (Color online) (a) Two-port B block with finite size, (b) two-port half-infinite 8 block with upper boundary, (c¢) two-port half-

infinite B block with lower boundary.
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Fig. 8. (Color online) (a) Left-to-right and (b) right-to-left direc-
tional characterizations. The left and right boundaries are set at
z=z_ and z,, respectively.

terization procedure. Let us consider the left-to-right di-
rectional characterization of the multilayer for obtaining
the layer S matrix of this structure, S. The excitation field

of the left boundary, Q, the reflection field E, and the
transmission field 7" are given, respectively, by

M N
U= E E (@ + Uy gy + Uy gy 12)
~  m=-M n=-N - - -

Xexp(j(kx,mx + ky,ny + kz,m,n(z -z))), (16a)

M N
R= E E (Fx,m,nx + Fy,m,ny + Fz,m,nz)
~  m=-M n=-N - - -

Xexp(j(kx,mx + ky,ny - kz,m,n(z - Z—))) 5 (16b)

M N
= E E (Ex,m,nx + {y,m,ny + fz,m,nz)
m=-M n=-N - - -

Xexp(i(kx,mx + ky,rhy + kz,m,n(z - Z+))) . (160)

([

By the same manner, the right-to-left characterization
is performed. In the case of the right-to-left characteriza-
tion; the excitation field of the right boundary, g ; the re-
flection field E ; and the transmission field f are given, re-
spectively, by
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M N
7o S
m=-M n=—

Xexp(j(kx,mx + ky,ny - kz,m,n(z - Z+)))a (173)

(&—x,m,nx + Iz—y,m,ny + ﬁ—z,m,nz)
N — v —

M N
R= E E (Fx,m,nx + Fy,m,ny + Fz,m,nz)
~  m=-Mn=-N - - -

Xexp(j(kx,mx + ky,ny + kz,m,n(z - Z+))) > (17b)

M N
T= E E (Ex X + by ny + o mn?)
~  m=-M n=-N - - -

Xexp(j(kx,mx + ky,ny - kz,m,n(z - Z+))) . (170)

Then the transverse field continuation boundary condi-
tions of the left-to-right characterization and the right-to-
left characterization of the two-port « blocks read, respec-
tively, as

(wa,h wa,h> U (Wa,+<0>
Va,h _Va,h (R— N Va,+(0)

C+
X(Cf'a> atz=2z_, (18a)

a,a

(Wa,h Wa,h) T _<W0’+(z+—z_)
Ver — =Var/\0) \Vaulei-2)

Cla
x| atz=z,, (18b)

wa,—(z— - Z+))
Va,—(z— - Z+)

W,-(0)
V,-(0)

Coa
(wa,h wa,h ) 0 <Wa,+(0) wa,—(Z— _Z+))
Va,h - Va,h 'i‘— - Va,+(0) Va,—(z— - Z+)
Cls
X C;:b atz=z_, (18¢)
(wﬂ,h W, ) R (Wﬂ,+<z+ -z.) wa,_m))
Va,h - Va,h ﬁ N Va,+(z+ - Z—) Va,—(o)

Clo
X c, atz=z,, (18d)

where W, ;, and V,; are [2(2M+1)(2N+1)]X[2(2M +1)
X (2N +1)] matrices given, respectively, by

I 0
W= (0 1)’ (19a)
1 RoxmPayn 1 (B2, k)
V= WMo ka,z,m,n w_Mo ka,z,m,n
“ 1 (k2 +k% ) 1 kaynkaxm
Ty Repn 0o kuzmn

(19b)
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W,.(2) and V,,(2) are [2(2M+1)(2N+1)] X M* matri-
ces indicating the part of the positive modes given, respec-
tively, by

H H
~ (1) = (M*)
E FEO+  gjkglte E FO+ kg )2

a,y,m,n,p a,y,m,n,p
p=-H
Wa,+(z) = H H ,
F(1)+ RATI M)+ k(M )ty
E Eaxmnpe] @zp® E Eaxmnpe]
p=-H p=—H

(19c¢)

E FO+ ke E FMY+ ik

aymnp oqymnp
Va,+(z) =
1 k(1)+ Mt k(M )+
E H(cw)c+mn wzp® E H(axr);np
(19d)

W, _(2) and V, _(2) are [2(2M +1)(2N+1)] X M~ matri-
ces indicating the part of the negative modes, given, re-
spectively, by

Cia Wi W, (0)+ V3V, . (0)
Coo| \WJW,.(z.-2)-V}V,.(z,-2)

wo| [ WahWes(0) + VI3V, .(0)
C;,b - W:y,lhwa,+(2+ _Z—) - Va,hva,+(2+ _Z—)

Then, the layer S-matrix components, ﬁ, T), ﬁ, and f,
are given by

R=W,}[W,.(0C,, +W, (z.~2)C;,~W,;],

(21a)

T=W,}[W,.¢, -2)C., + W, (0C;,], (21b)

R=W_LIW,. (2, —2)C, + W, _(0)C;, - W,],
(21c)
T Wa h[Wa +(O)C b + W (Z

2)C,l.  (21d)

The boundary S-matrix [20] components, ﬁ, ’i‘, f{, and T
of the half-infinite « block with right boundary are given
by
R=-[(W,»)'W,_(z)
- (Va,h)_lva,—(zc)]_l[(wa,h)_1Wuz,+(zc)

- (Va,h)_lva,+(zc)] ’ (223)
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H H
- R M-~ M),
E E(a;/mnpe] azp® 2 E(ayr)nnpe] wEP
p=—H p=—H
Wa,_(z)z H H 5
1)- RO M R )2
2 By e > B e e
p=-H p=-H

(19e)

1)— k(l)— M)— k(M )—
E H() azp® E H(ayr)nnp hats

ay,m np
Va,—(z)=
D- s SR
E foa)cmnp wzp® 2 Haxmnp “ep
(191)

U and U are the input operator, [2(2M+1)(2N+1)]
X[2(2M +1)(2N +1)] identity matrices. ﬁ,ﬁ, and T,'i‘_ are
the reflection and transmission coefficient matrix opera-
tors, respectively.

The coupling coefficient operators S-matrix compo-
nents, C;, ,, C_ ., C,;, and C , are obtained by, from Eqs.

a,a’ Y aa0 Y abr

(18a)-(18d),

WIW, (z_-2z,) +V;}hva,_(z_—z+>>-1 2U 200
W, W, _(0)-V;,V,_(0) 0| 2
wt_)z,lhwa,—(z— - Z+) + V;,lhva,—(z— - Z+))_1 0 (20b)
W, W, (0)-V,}V, (0) 2U |
[
T=[(W,_(2))'W,,
(Vo () WV T LW, _(2) "W, (20)
- (Va,—(zc))_lva,+(zc):|, (22b)
R=-[(W,_(z))'W,,
- (Va,—(zc))_lva,h]_l[(wa,—(zc))_1wa,h
+ (Vu,—(zc))_lva,h]’ (220)
T=2[(W,,) "W, _(z) - (Vo) 'V (20T (22d)

The boundary S-matrix components, R_, 'i‘, ft, and T of
the half-infinite « block with left boundary are given by

R=-[(W,,z) "W, + (V,,(z) 'V, ]!

X [(wa,+(zc))_lwa,h - (Va,+(zc))_lva,h] ) (233)
T=2[(W,,) "W,z + (Vo) 'V, ()]}, (23b)
R=-[(W,) "W, ,(z) + (Vo) 'V, (z)]™"

X[(wa,h)_lwa,—(‘zc) + (Va,h)_lva,—(zc)]a (230)
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T=[(W,.(2)) "W,
+ (Vo 2) WV T LW, (2)) W, _(2,)
- (Va,+(zc))_1va,—(zc)]-

By a similar manner, we can derive the layer S matrix
and the boundary S matrices from the transverse field
continuation boundary conditions of the two-port A
blocks. The boundary conditions of the down-to-up char-
acterization and the up-to-down characterization of the
two-port B blocks read, respectively, as

RPN
Zg, ~Zgy)\R|) \Zg.(0)
Cs,
x| 7 atx=x_, (24a)
Cs.
(Yﬂ,h Yﬁ,h )(TT> : (Yﬁ’+(x+ - x_)
Zﬁ,h - Zﬂ,h 0 - ZB’+(3C+ - x_)

Csa
x| 7 atx=x,, (24Db)
Cs.

-

Zg, —Zpy)\T,) \Z;.(0)
C+

X( 'f'b) atx=x_, (24c¢)
CB,b

(Yﬁ,h Yﬁ,h )(RT> _ (Yﬁ’+(x+ - x_)

Zﬂ,h _Z,B,h Ul B Zﬁ’+(x+—x_)
C+

x( f’b> atx=x,, (24d)

Chp

where Yz, and Zg; are [2(2M+1)(2N+1)]X[2(2M +1)
X (2N +1)] matrices given, respectively, by

(23d)

Yﬁ,—(x— - x+)
Z (x_-x,)

Yﬂ,_(0)>
Z (0)

YB,—(x— - x+)
Zﬂ,—(x— - x+)

Yﬂ,_(o>>
Z (0)

I 0
Yz = (0 I) ) (25a)
1 kgembkpyn 1 (ke * Rjyom)
Z;;h _ B wl/«;) kﬁ,x,;n,n B w_,U«o k,B,x,m,n
’ 1 (kgyn+kgemn) Lkﬁ,y,nkﬁ,z,m
w_Mo kﬁ,x,m,n WLo kﬁ,x,m,n
(25b)

[cs, | _( (Y54, Y,5.(0) + Z54Z, ,(0))
Cha| \(YpuYp.(x,—x) = Z5)Zp,(x, —x))

Chs| ( (Y53, Y 5,4(0) + 25}, Z .(0))
| Cap | \(Y5h Y., —x) - Z5hZ, (x, —x))
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Y;.(2) and Zg ,(2) are [2(2M +1)(2N +1)] X M* matrices
indicating the part of the positive modes given, respec-

tively, by

M

Z(1)+ AT
2 By mnse"m

m=-M

YB,+(x) =

Bz,m,n,s

HD+

By,m,n,s

M=

m=-M

Zg.(x)=

M=

Bz.m,n,s

m=-M

M
> ED PRSI
m=-M

(1)
eka,n:x .

FO+ ke

M
> R et

By,m,n,s
m=-M

M
~ . +
S B o
m=-M

>

Bz,m,n,s

(25¢)

M
> g I

By,m,n,s
m=-M

M .
S A, s
m=-M

Bz,m,n,s

(25d)

Y (2) and Zg_(2) are [2(2M+1)(2N+1)] XM~ matrices
indicating the part of the negative modes given respec-

tively, by
M
S Bt
Y, (0=|"%"
S Bl e
m=—-M

Zg (x)=

M
FM)- M)
2 Eﬂ,y,m,n,se] wm
m=-M
M 5
SO0 )
M

Bz,m,n,s

(25e)

By,m,n,s

M
~ 2 o (M7)-
2 H(M )= e/kx,m x
m=-M
Biz,m,n,s

o .
> gM- P
M

(251)

The coupling coefficient operators S-matrix compo-

nents, C;,, C;,, Cj,;, and Cj,, are obtained, from Egs.

(24a)—(24d), by

(VY (e =) + 252 (x =)

(Y55Y;,_(0) - 2 Zs_(0))

(Y5 Y (x_—x,) +Z5hZp_(x_—x,))

(Y3, Y5(0) - Z5},Zs _(0))

“2u,]

o | R (26a)
17 0 7

2u, || (26D)
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The layer S-matrix components, R|, T;, R;, and T, of the
two-port B block are given by
R = YZ;,I,L[YB,J,(O)C*’G +Y5 (x_-x,)Cp, - Yg,],
(27a)

T, =Y} (Y, (x, ~x)Ch,+ Y, (0)C5,],  (27Db)

R =Y;5[Ys.(x, -2 )Ch, + Y, (0)Cp, - Yp],
(27¢)

T, =Y5[Y5.(0)Ch, + Y, (x_-x,)Cp,].  (27d)

The boundary S-matrix components, R|, T;, R}, and T
of the half-infinite B block with upper boundary are given
by

RL == [(Yﬁ,h)_lYﬁ,—(xc) - (Zﬁ,h)_lzﬁ,—(xc)]_l[(Yﬁ,h)_lYﬁ,+(xc>
~(Zgp) 2, (x0)], (28a)

T, = [(Y,e,_(xc))_lYﬂ,h - (Zﬁ,—(xc))_1Zﬁ,h]_1[(Y5,_(xc))_1Yﬁ’+
- (Zg_(x) 2,1, (28b)

T, =2[(Yp,) 'Yy (x) = (Zpp)'Zp_(x)]",  (280)

R, =-[(Yg_(x, ))_1Yﬁh - (Zﬁ,-(xc))_lzﬁ,h]_1[(Yﬁ,-(xc))_1Yﬁ,h
+(Zg(x0)) " Zg ). (28d)

The boundary S-matrix components, R|, T, Ry, and T
of the half-infinite 8 block with lower boundary are given
by

RL == [(Yﬁ,+(xc))_1Y/3,h + (Z,B,+(xc))_lzﬁ,h:|_1[(Yﬁ,+(xc))_1Y/3,h
- (Zﬁ,+(xc))_lzﬁ,h], (2921)

T, = 2[(Y,8,h)_1Y5,+(xc) + (Zﬁ,h)_lz,g,+(xc)]_l, (29b)

R =—[(Yp) Yy, (x) + (Zg)) 2 (x )] [(Yp) ' Y ()
+(Zgy) "2 _(x)], (29¢)

T = I:(Yﬁ,+(xc))_lYﬁ,h + (ZB,+(xc))_lzﬁ,h]_1[(Yﬁ,+(xc))_1Y,B,—
- (Zy ) 'Z ] (294)

4. LOCAL FOURIER MODAL ANALYSIS OF
FOUR-PORT INTERSECTION BLOCKS

As stated in Section 3, the eventual objective of this paper
is the complete mathematical modeling of four-port
crossed nanophotonic structures. As shown in Fig. 2(a),
two-dimensional photonic crystal cross-waveguide struc-
ture is chosen as an analysis example. This cross-
waveguide structure is composed of five subparts; ports 1,
2, 3, and 4 and the intersection cross block. In this sec-
tion, the LFMA for analyzing the Bloch eigenmodes and S
matrix of the four-port intersection block is described.
Eventually, the 4 X4 S matrices of four-port cross blocks
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interconnecting two-port « and B blocks will be developed
in Section 5 based on the theory described in this section.

Figures 9(a) and 9(b) show the separated intersection
block of the photonic crystal cross-waveguide structure
and its S-matrix diagram, respectively. In the proposed
LFMA, the intersection block is embedded into a larger
block with absorbing medium [or perfect matched layer
(PML)] block [30] placed within the waveguide branches
connected to ports as shown in Fig. 9(a). The internal part
indicated by the dashed-line rectangle is the intersection
part of the analyzed cross-waveguide structure. The
dashed-line rectangle is the boundary of the intersection
block defined in Fig. 9. The PML within each waveguide
branch is necessary to model nonperiodic structure and
prevent the eigenmode profile from being deteriorated by
interference induced by periodicity. With the PML, the
power flow through each waveguide branch is outward
without nonphysical reflection at the interface of the cross
block. The basic intuitive assumption of the LFMA is the
electromagnetic isolation among individual blocks by the
field localization on nanophotonic structures.

The field representation of the Bloch eigenmode within
the four-port intersection block should be prepared. The
pseudo-Fourier representations of the Bloch modes in the
a and B blocks of the four-port intersection block are
taken, respectively, as the same forms of Egs. (12) and
(14). The total electromagnetic fields in the four-port cross
block can be represented by the superposition of the ob-
tained « and B-Bloch eigenmodes

M M~

Exy,2) =D, CLE, o (x,y,2) + X, Co B, )(x,y,2)
£ 2 Cas? 2 CasZ

M M~
+ El C;)gEE’(g)(xvyvz) + El CZ})gEE,(g)(xx’y’Z)’
8= 8=
(30a)
M* M~

H(x,y,2) = E CrgHy o(x,y,2) + 2 CrogH 0)%,7,2)
+ 2 ClheHp )(x.7,2) + E CogHp )(%:3,2)

(30b)

where C, , and C_, are the coupling coefficients of the
positive and the negative a-Bloch eigenmodes, respec-
tively. CZ). < and C7, are the coupling coefficients of the
positive and the negative B-Bloch eigenmodes, respec-
tively.

In addition, we take the Fourier series approximations
of the exponential functions of the eigenvalues in Egs.
(12a), (12b), (14a), and (14b) as follows:

H
2mq
exp(jk &z = >, ;@*exp[ T z} (31a)
q=—-H z
27Tq
exp(]'k%’tzc, 2 §<g) exp|j , (31b)

where {(52; and 5(53; are given, respectively, by
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Fig. 9. (Color online) (a) Intersection block model with PML
placed within four waveguide branches, (b) schematic of 4 X4 S
matrix.

RET
§(g}‘ = sinc -q, (32a)
21
@)
29* = gine Feo T -q. (32b)
B.a 277_

By substituting Eqs. (32a) and (32b) into the pseudo-
Fourier representations of the Bloch eigenmodes Egs.
(12a), (12b), (14a), and (14b), we can obtain the Fourier
approximation representation of the Bloch eigenmodes.
The resultant @-Bloch eigenmode representations read as

M N H

E; o (x,3,2) = exp(ilbopx + Ry qy) > >,

m=-M n=-N s=—-H

X(E9* x4 E

a,x,m,n,s=

sy +ECE L 2)

azmns

Xexp(j(Gy nx + Gy,ny +G, 2)), (33a)

HZ ) (x,y,2) = exp(illeor + k) > 2 2

m=-M n=-N s=-H

X(HE:  x+HE:  y+H

a,x,m,n,s= azmne)

Xexp(j(Gymx + Gy py + G 2)), (33b)

eeo0o0o0e0e0
°eeeeee Intersection
R ileese | Dlock
...:....

©e0coo0o00

0 0,0 000
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Fig. 10. (Color online) Permittivity profiles of the intersection
blocks of the two-dimensional photonic crystal (a) cross wave-
guide, (b) T-branch, and (c) 90°-bend structures.

where the Fourier coefficients of the representations are
obtained by

E®:  x+E€*  y+EE:

a,x,m,n,s= a,y,m,n, u(zmns

)= )+ )+
2 (gfs—p agxmnpx"'ég—p fymnpy

+ 8 EW2

s—p™~ a,z,m,n,p

2)exp(-jkE)z-), (34a)
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Fig. 11.  (Color online) Dominant eigenmode profiles of the intersection block of the cross waveguide structure: (a) E}, ), (b) Ej ;) ,, (c)
H 0 (@ H )0 (&) Hi gy B Hi .

Fig. 12. (Color online) Dominant eigenmode profiles of the intersection block of the photonic crystal T-branch structure: (a) E:,(n 5 (b)
By © Hoyo () Hp ) (@ Hy g (0 Hp )
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Fig. 13. (Color online) Dominant eigenmode profiles of the intersection block of the photonic crystal 90°-bend structure: (a) E;’(D 4 ()
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Fig. 14. Excitation of ports (a) 1, (b) 2, (¢) 3, and (d) 4.
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’ Ey(a'u') H(rxgzc+mnsx+H(z§3)'+mns-y+HazmnsZ
H
= X (L8 H ot + L Y
p=-H
LSS HEY, 2 )exp(=jRE) 2), (34b)

The resultant B-Bloch eigenmode representations read as

M N H

E} o(x,3,2) = exp(ik, oz +ky ) D, > D

s=—M n=-N p=—-H

1
,. P Ey(au.) (EB?simnpx"'E(gyisnpy+E(§;snp )
0.5 Xexp(j(G, x + Gy .y + G, »2)), (35a)
. H, ) (x,y,2) =exp(ilk, o2 + kyqy) >, >, >
0.5 s=—M n=-N s=—H
)
' » +
. by X(H(glsnpx+H(g)snpy+H(ﬁglisnp )
Xexp(j(Gyx + G,y .y + G, y2)), (35b)
where the Fourier coefficients of the representations are
- 1 1
S E, (aw) obtained by
ha 80
" a E(gx ,S n,p‘x + E(Bg;/_s n py + [(‘ig;fs,n,p’g
|
Il““ h i S s gl
l . = E (g(g Eﬁxmnpx+§ Eﬁ,ymnpy
He m=-M
0.5
e + + +
L B2, + {8 B8 2)exp(—jkEx-), (36a)
-1
(© Hﬁxsnp“H‘ﬁ&*snpwH(fzsnp
Fig. 15. (Color online) LFMA results of the S-matrix character-
ization of (a) the intersection block of the photonic crystal cross 2 ( H (g)+ H(g)+
waveguide structure, (b) the photonic crystal T-branch structure, S mb L e, p% + L BymnpY
and (c) the photonic crystal 90°-bend structure.
+ g‘g)+ H(g’l”m n,p2)€XP(= _]k “x). (36b)
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Fig. 16. Two-port « block interconnection: (a) left and right finite size blocks, (b) left half-infinite and right finite size blocks, (c) left
finite size and right half-infinite blocks, (d) left and right half-infinite blocks.
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(a) (b) © (@

Fig. 17. Two-port B block interconnection: (a) upper and lower finite size blocks, (b) upper half-infinite and lower finite size blocks, (c)
upper finite size and lower half-infinite blocks, and (d) upper and lower half-infinite blocks.
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Fig. 18. (Color online) Diffraction of the fundamental guided Bloch eigenmode at the right endface of the two-dimensional half-infinite
photonic crystal structure: (a) simulation schematic, (b) y-polarization electric field distribution, (c¢) x-polarization magnetic field distri-
bution, (d) z-polarization magnetic field distribution. Excitation of the fundamental guided Bloch eigenmode at the left endface of the

two-dimensional half-infinite photonic crystal structure: (e) simulation schematic, (f) y-polarization electric field distribution, (g)
x-polarization magnetic field distribution, (h) z-polarization magnetic field distribution.
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(Color online) Transmission and reflection of two-dimensional finite sized photonic crystal waveguide by a normally incident

plane wave: (a) simulation schematic, (b) y-polarization electric field distribution, (c¢) x-polarization magnetic field distribution, (d)
z-polarization magnetic field distribution.

Fig. 19.
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Fig. 20. (Color online) (a) Interconnection of four two-port

blocks and a four-port cross block, (b) extended four-port cross
block composed of four two-port blocks and a four-port intersec-
tion block.

With the Fourier approximation of the pseudo-Fourier
Bloch eigenmode representations, we can find the appro-
priate boundary condition equations to obtain the S ma-
trix of the four-port intersection block.

Let us examine the a- and B-Bloch eigenmodes of three
examples: two-dimensional photonic crystal cross-
waveguide structure [2], two-dimensional photonic crys-
tal T-branch structure [5], and two-dimensional photonic
crystal 90°-bend structure [6], permittivity profiles of
which are shown in Fig. 10(a)-10(c), respectively. The
PML blocks are placed in the waveguide channels within
the dummy region. The mode profiles of the dominant a-
and pB-Bloch eigenmode transferring electromagnetic
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power are analyzed by the LFMA with the Fourier trun-
cation order of M=14, N=0, and P=14.

Figures 11-13 show the dominant eigenmode profiles of
the intersection blocks of two-dimensional photonic crys-
tal cross-waveguide structure, two-dimensional photonic
crystal T-branch structure, and two-dimensional photonic
crystal 90°-bend structure, respectively.

The 4 X4 S-matrix is derived by solving four boundary
conditions at four boundaries of the intersection block.
Let us denote four excitation fields at the ports 1-4 as Uj,
Us, U, and U, that are represented, respectively, by

M N

Ul = 2 E (ul,x,m,nx + ul,y,m,ny + ul,z,m,nz)
- m=-M n=-N - - -

Xexp(j(ka,x,mx + ka,y,ny + ka,z,m,n(z - Z_))) )

(37a)
M N
22 = E E (u2,x,m,n3_c + u2,y,m,ny + u2,z,m,nf)
m=-M n=-N -
Xexp(i(ka,x,mx + kzx,y,ruy - ka,z,m,n(z + Z+))) >
(37b)
M N
l_IS = E E (uS,x,m,ng_C"' Usymny + uS,z,m,nE)
m=-M n=-N -

Xexp(i(kﬁ,x,m,n(x - x—) + kB,y,ny + kB,z,mZ)), (370)

M N

U4 = 2 E (u4,x,m,nx + u4,y,m,ny + u4,z,m,nz)
- m=-M n=-N - - -
Xexp(j(— kg mnd —%,) +Rgyny + kg, m2)).
(37d)

Let us denote the radiation fields (transmission and re-
flection fields) at ports 1-4 induced by the excitation of
port i (for i=1, 2, 3, 4) as T}y, Ty, Ti3, and T4 that are
given, respectively, by

M N

Ti= 2 E (1o mn® + ity mnd + it zmn?)
- m=-M n=-N - - -

Xexp(j(ka,x,mx + ka,y,ny - ka,z,m,n(z - Z—))) )

(38a)
M N
Ti2 = E 2 (ti2,x,m,nx + ti2,y,m,ny + ti2,z,m,nz)
- m=-M n=-N - - -
XeXp(j(ka,x,mx + ka,y,ny + ka,z,m,n(z - 2+))) )
(38b)
M N
Tis= E 2 (tigxmn® + tigy mnY + i3z mn?)
- m=-M n=-N - - -

Xexp(j(=kgymn(X —x_) +kgy Y + kg, m2)),
(38¢)
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Fig. 21. (Color online) Interconnection through ports (a) 1, (b) 2, (¢) 3, and (d) 4.

M N z-direction dummy areas, respectively. These are actually
T= E E (tiapymn® + idymnd + tidzmn?) the thickness of the PML blocks.
T m=Mn=-N - - B We can obtain the S-matrix components, Sij,

S5, Si3, and S;4 by simultaneously matching the
boundary condition at four boundaries, when port 1
is excited by the input field operator U;. Similarly we can

Xexpg(kﬁ,x,m,n(x - x+) + kﬂ,y,ny + kB,z,mZ)) .
(38d)

The boundary conditions to obtain the scattering matrix
and the coupling coefficients operators are described.
There are four boundaries as shown in Fig. 9. The bound-
aries for ports 1-4 are set up at z_=-T,/2+AT,, z,
=T,/2-AT,, x_=-T,/2+AT,, and x,=T,/2-AT,, respec-
tively. AT, and AT, are the thickness of the x- and

obtain S;;, S;9, S;3, and S;4, when the port i is excited
by the input field operator U;. This is illustrated in
Fig. 14.

The transverse field continuation boundary conditions
at four boundaries can be expressed as the following ma-
trix equations:

(Wa,h Wﬂ,h>(U1 0 0 0> W,.z) W, (@)\(C. Ci, Ci; ;,4>
Va,h _Va,h Si1 So1 S Sy N {’a&(‘zf) ‘\Vlar(zf)

C.1 @2 23 Cou
W,.z) Wy (z))\/C5 p PP o)
s s - pe - P, atz=z., (39a)
Vi.(20) Vi_(2) Cs1 Cpo Cps Cha

(wa,h W, ) <S12 Sso Sso S42>

C.. C., C,; Ci,
Vo, -V /0 U, o0 0

Cot @2 a3 Caa

(CE,l Csz  Css  Chs

- _ _ _ atz=z,, (39Db)
Cs1 Cpy  Cps C,BA)
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Voi2), Vo (2), Wg,(2), Wy _(2),

\~7,3,+(z), and \7&_(2) are defined, respectively, by
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>
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H
77(1) iG e
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ele,sz e
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H
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2 ngy r)n n selGZ'sz

s=—H

H 5
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2 E(ax r)ntn seJGZ’sZ

s=—H

(40a)

M)+

2 H(ay r)n n,s

2 M= G2

ax,m,n, s
s=—H
(40Db)
M*)+
E E( ,y,r)n n,s
s——H
M)+ G
E E(Bx r)n n,s =
s=—H
(40c¢)
H
M) iG
E H( By, r:n se] 2
s=—H
H ’
I7(M)= G
E Hﬁ,xm n se] 25
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(40d)
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e )( I B U GLL
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and Yg,00), Y5-(0), Zg,(x), Zg (@), Youlw), Yo (),

Za&(x), and Za,_(x) are defined, respectively, by

E(l):

EME

?ﬁ,i(x) =
EW=
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HD+

?a,:(x) =

(1)

N
2
e
N

I
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Byy,m,n.s

B,z,m,n,s

B,z,m,n,s

eij’mx

iG.

x,m

e]Gx,mx

1)+
2 E(a,;/,mns m

2 ngl,);m n,s

elGx,mx ce.
@,y,m,n,s

e/'Gx,mx .

a,z,m,n,s

eijymx .

M
M)+ iG
E E(B,y,r)n,n,se] wmt
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M ’
= (M*)+ iG e
EB z,m,n, se] o
m=-M

(41a)

E H ,y,r;nse] m

H(M )+

B,z,m,n,s

e]Gx,mx

(41Db)

M*)x G
2 E(yr)nnse] wm

M)+ iG
2 Efx,z,r)n,n,se] m’
=M
(41c)
M
M*)x G
E H(a,y,r)n n, se] wm
m=-M
M
77(M*)+ iG
E gx,z,r)n,n,se] wm
m=-M
(41d)

From Eqgs. (39a)—(39d), the coupling coefficient matrix op-

erators C* .,C”

by

C!l’ al’

Cj:»and Cy; fori=1, 2, 3, 4 are obtained
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(O
C.:
Cj,
Cy;
WW,. 0+ VIV, (WW, )+ VIV, ) (W We )+ VIV, (W)W, )+ V.V, ()
WA W) - VAV, L) (WAW, ()-ViV. ) (WAWe,e)-ViiVa, ) (WohWs () -V, ()
| @4 Z ) TRV e+ B ) T+ T T T+ ZZ )
VoY) =232, x)) Vo) =232, () YY) -Z5Zs. () (Y Yp-() - Zg)Zs(x)
20,0y
{om]
2U, 68,
[
The S-matrix components, S;1, S;5, S;3, and S;4 are also Sy = w;,lh[Wa,+(Z+)C;,i + Wa,-(2+)c;i + Wﬁ,+(2+)02§,i

obtained, respectively, from Eqgs. (39a)-(39d),

Si= W LIW, . ()C:, + W, _(2)C;,; + W,,(z)Ch; +Wp (2,)C;,; - W, 621, (43b)

+ Wﬁ,_(z_)CZ;’i - W61, (43a)

(@)

(c) )

Fig. 22. (Color online) Building the extended four-port cross block: (a) step 1: interconnection of a two-port block to the four-port cross
block through port 1, (b) step 2: interconnection of a two-port block to the combined four-port cross block through port 2, (c) step 3:
interconnection of a two-port block to the combined four-port cross block through port 3, (d) step 4: building the extended four-port cross
block by the interconnection of a two-port block to the combined four-port through port 4.
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Fig. 23. (Color online) (a) Cross waveguide structure and

y-polarization electric field distributions at each step of building
the extended four-port cross block by the step-by-step intercon-
nection procedure: steps (b) 1, (¢c) 2, (d) 3, and (e) 4.

Siz= Yﬁ,lh[?a,Jr(x_)CZ,i + i(a,—(x—)c;,i + §B,+(x—)czi,i

+ ?ﬁ,—(x—)c,é,i =Y;05], (43¢)

Siu=Y Y, . @)C+ Y, (x,)C,,; + Y. (x,)Ch,;
+ ?B,—(’%)C;—;,i =Yg,6]. (43d)

We can easily understand that the S-matrix and cou-
pling coefficients equations of the two-port blocks of Eqs.
(20a), (20b), (21a)—(21d), (26a), (26b), (27a), and (27b) are
the special cases of the above-stated equations of the four-
port cross blocks.

The validity of the derived formulas is examined by the
visualization of field distributions when a normally inci-
dent plane wave impinges on the port 1 interface of the
intersection block. Figures 15(a)-15(c) illustrate the
LFMA results of the S-matrix characterization of the in-
tersection block of the photonic crystal cross-waveguide
structure, the T-branch structure, and the 90°-bend struc-
ture, respectively. Here the regions of ports 1-4 are free
space. We can see that the field boundary conditions are
well-matched and the field continuity is conserved.

5. GENERALIZED SCATTERING-MATRIX
METHOD

The S-matrix characterization of the four-port intersec-
tion block provides a basis to construct the GSMM for de-
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Fig. 24. (Color online) (a) T-branch waveguide structure and
y-polarization electric field distributions at each step of building
the extended four-port cross block by the step-by-step intercon-
nection procedure: steps (b) 1, (¢) 2, (d) 3, and (e) 4.

scribing general nanophotonic networks. In this section,
the GSMM for the four-port cross nanophotonic structure
composed of four two-port blocks and a four-port intersec-
tion block is developed. In Subsection 5.A, the intercon-
nection of two-port blocks is described with the 2 X2
S-matrix formulation. In Subsection 5.B, the 4 X4 GSMM
representing the interconnection of a four-port intersec-
tion block and four two-port blocks is developed.

A. Interconnection of Two-Port Blocks

The interconnection of two-port blocks can be described
by the 2X2 S-matrix model. In Figs. 16 and 17, four
kinds of interconnection of two-port @ and B blocks are il-
lustrated. The S matrices of the interconnected blocks are
established in Section 4.

Let us assume two two-port a blocks with finite size
that are characterized by respective S matrix SV and
S22 The layer S matrix of the multilayer structure, i.e.,
the interconnected structure, S%? and its coupling coef-
ficient matrix operator is obtained by the ESMM [11,20].

The directional characteristics of multilayer can be ob-
tained by properly combining the obtained matrix opera-
tors of single layers through the Redheffer’s star product
relation S1-2 =811 8§22 described in [11,20].

The reflection and transmission matrix operators,
R(1:2, T2 R12) and T2 of S112) of the multilayer are
obtained by the Redheffer’s star product relation
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RL2 _R®LY 4 ri“(l,1)[(1 _ §(2’2>f{(1’1))‘I]E(Z’Q)'i‘(l’l),
(44a)

T2 _ 'i‘(2’2)[(l _ ﬁ(1,1)§(2,2))—1]i‘(1,1)’ (44b)

R1L2 _R@2 4 ’i‘(“)[(l _ ﬁ(1’1>f{_(2’2))‘l]f{(l’l)'i‘_(Z’Z),
(44c)

T2 - ’i‘_<1’1)[(1 _ §(2,2>f{(1,1))-1]f(2,2>. (44d)

Let us denote the internal coupling coefficient matrix
operators of the combined multllayer as Caa(1 2) and
Cl, . Here C%) ) and C} ) are [42M+1)2N

+1)]X[8(2M + 1)(2N+ 1)] matrlces given by

~(1,2) (1,2 (1,2
Ca,a,(l,Z)_[Ca,a,(1)7C a(2)] (45a)

CLN) (1,N) ~(1,1) ~(1,1) ~(2,2) 2,2
(Ca,a,(l,N)’C b,(1 N)) = (Caa,(l,l)’C b (1 1>) (Caa,(Z,Z)’C b (2 2)) ko

With the above results, we can construct the total S
matrix of the whole multilayer M(O-N+1_ At the first step,
the S matrix SO of the multilayer M®N) is derived by
the Redheffer’s star product of 80 of Egs. (22a)—(22d)
and SN of Eq. (47a) as

SO.N _ g(0,0), LN (48a)

The coupling coefficient matrices Cg) f?k) and C(Ob ") (1

=k=N) of the layers L;—Ly in M®Y) are given as [20]

(Cl(l(?é\f)), 20(kN))) — (C(l N)(I R(O O)R(I,N)) 1T(0 0) C(l N)

+ CL(I — ROORIN)-IROOTLN)
(48b)

The total S matrix SON+D of the multilayer MO-N+D ig
taken as

S(O,N+1) — S(O,N) « S(N+1’N+1). (493)

The final coupling coefficient matrices C(ao(],:;ﬂ) and

C;;OE%H) (1=k=N) of the layers L;—Ly in M*N*1 are ob-
tained as

(0,N+1) (ON 1) (ON) (ON) N+LN+ 1P 0, L
(Com ™, Chiy ) = (O + Ca) (- RN DRON)-

Xﬁ(N+1,N+1)ri~(O,N)’ CEOEQ?(I

_ ﬁ(N+1,N+1)ﬁ(O,N))—1f(N+1,N+1)). (49b)
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=(1,2) (1,2) (1,2
Ca,b,(1,2) = [Ca,b (1),C b (2)] (45b)

where (C(1 2) , 21’12)) and (Cfll’zz), (12) are the respective
coupling coefﬁciént matrix oﬁerators corresponding to the
first and second layers. Then the formulas of the internal
coupling coefficients are derived, by the extended star
product of the ESMM, as

(e5). (c rciija- RR>RT)

(1,2) 1 =~ 5 —1m(
Cb’(l) ng,d;(l - R22RAL)-1T22)
(46a)
(Cgé;) ( C(2,2>(I _ f{(1,1)§(2,2))-1ri‘<1,1) )
12|~
cyd ng(g) az(;;(l RLVRE 2)y- IRLLTE2)
(46Db)

The layer S matrix and the coupling coefficient matrix
of the multilayer M) can be obtained by

SO = gL, §22) ..., GW-LN-1) , QW.N) = (474)

(N-1,N-1) ~(N-1,N-1) (N,N)
* (Ca,a,(N—l,N—l)’Ca,b,(N—l,N 1)) (Caa (NN)’C b (NN))

(47b)

The S matrix S©N*1 and the coupling coefficient ma-
trices, sz (2\1;1) nd Céo(%”), provide the complete charac-
terization of the multilayer M(©O-N+1),

Using the boundary S-matrix formulas and the previ-
ously analyzed Bloch eigenmodes, we present the reflec-
tion and transmission characteristics of the fundamental
guided Bloch eigenmode of the half-infinite two-
dimensional photonic crystal waveguide structure in Fig.
18. Figure 18(a) illustrates that the fundamental guided
Bloch eignmode is incident on the end face of the photonic
crystal waveguide. The backward propagating guided
Bloch mode is reflected and the diffraction field distribu-
tion is generated at the interface of the end face of the
photonic crystal waveguide and free space. The

y-polarization electric field, x-polarization magnetic elec-

tric field, and z-polarization magnetic field distributions
are shown in Figs. 18(b)-18(d), respectively. In Fig. 18(e),
the excitation of the fundamental guided Bloch eigen-
mode by a normally incident plane wave from free space
region to the interface is presented. The y-polarization
electric field, «x-polarization magnetic field, and
z-polarization magnetic field distributions are shown in
Figs. 18(f)-18(h), respectively.

With the layer S-matrix formulas, the reflection and
transmission characteristics of the finite sized two-
dimensional photonic crystal waveguide structure are
analyzed. Figure 19(a) illustrates that a y-polarization
plane wave is normally incident from the left free space
on the left end face of the photonic crystal waveguide and
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a diffraction field distribution is generated in the right
free space region. The y-polarization electric field,
x-polarization magnetic electric field, and z-polarization
magnetic field distributions are shown in Figs.
19(b)-19(d), respectively.

B. Interconnection of Four-Port Block and Two-Port
Blocks
In this section, the development of the 4 X4 S-matrix
model for the four-port block composed of two-port blocks
and four-port cross block is elucidated. Figure 20 shows
the S-matrix model of the four-port crossed nanophotonic
structure that is investigated in this section.

We can take a step-by-step approach to obtain the total
S matrix of this four-port cross nanophotonic structure.
Before obtaining total S matrix, we need to manifest the
interconnections of a two-port block and a four-port cross
block. In Fig. 21, the interconnection of a two-port block
and a four-port cross block through the port i is illus-
trated. The S-matrix components of the two-port block
are denoted, with the subscript indicating the connected

port number, by R_i, 'i‘i, f{i, 'i‘_i (i=1,2) and Ry, T|;, R};, Ty;
J

Su Su Sy 8y
Sz S» Sy S,
S Su Sy Sy
Su Su Sy Sy

1f‘i1 + ’i‘_lsll(l - 1a{1S11)_l'i‘1 ’fl(l - Sllﬁ‘l)_ISZl
Sl - l9‘1511)71{‘1
S15I-R;S;) ' T,
S1,(I- ﬁlsn)*hﬁ

Sgo + S12ﬁ1(I = Snﬁﬂ*lszl
Sg3+ s13ﬁ1(1 - Suﬁﬂ_lsm
Soq + S14ﬁl(l = Snﬁﬂ*lsm
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(1=3,4), respectively. The internal coupling coefficient
matrix operators of the two-port block are denoted, with
the superscript indicating the connected port number, by
Cg) and Cg), respectively.

By the same ray-tracing approach addressed in [20], all
components of the total S matrix of the connected struc-
ture can be easily derived. The internal infinite multiple
reflections through the four-port of the intersection block
and a two-port block are intuitively formulated to the re-
cursion equation of the S-matrix components and the cou-
pling coefficient matrix operators.

In the derived formulas, the tilde notation is used in

denoting the components of the total S matrix. 6(1)1, 621)2,
C(I)Z, and CS) indicate the coupling coefficient matrix op-
erators of the two-port block induced by the excitations of
parts 1-4, respectively. The superscript (1) means the
port index through which the two-port block is connected
to the four-port cross block. The derived S matrix recur-
sion formulas of the interconnection of the two-port block
and the four-port cross block through port 1 are listed as
follows:

T_l(I - Suﬁl)_lsm ’fl(l - Suﬁl)_lszu

Sag + Slzﬁ1(1 - S1114‘1)71531 Sy + SI2RI(I = Snﬁﬂ*lsu

Ss3+ SISRI(I - S11R1)_1S31 Sy + S13R1(I - Sl1R1)_ls41

S+ S14ﬁ1(1 - Sllﬁl)ASSl Sy + S14R1(I = S111%1)71S41

(50a)
Con\  [Cl+CsuT-RS;) Ty
cly ca- Snf{l)_lsn
e ’ X , (50b)
C;},g C(I-8,R) 'Sy
é(pl,zl C(bl)(l - Snﬁ1)_ls41

(éa,l C.. Cu éa,4>
éﬁvl 6372 6373 6.374
_ (Ca,l(l - ﬁlsll)_l’i‘l
) Cp(I- ﬁlsll)_li‘l

Coo+ Ca,lﬁ‘l(l - S11R1)_lsz1
Cpo+ Cﬁ,lﬁl(l - Snﬁﬂ_lsm

Cos+ Ca,lf\"l(l - Snﬁﬂ_lsm
Cps+ Cﬁ,lﬁl(l - S11R1)_1S31

Cost Ca,lﬁl(l - S11R1)_ls41>
Cpy+Cpr(I- Snﬁl)_lsu
(50c¢)

The derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block through

port 2 are listed as follows:
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Sy Sy Sy

S» S Sy

Si; Sy S

S Sy Sy

S+ S21ﬁ2(1 - Szzﬁz)_lslz So:(I- ﬁzszz)_li‘z Sz + Szlﬁz(l - SZzﬁz)_lssz Sy + S21ﬁ2(l - Szzﬁz)_lsz;z

Ty(I- S5R,) 'S, R, + T3855(I - RyS,0) T, Ty(I - 522§2)_1532 Ty(I- S5R,) 'S
S1s + SuR( - Sy,Ry) 'S S25(I-R,S5) T, Sas+SpaRo(I- S R0) 183 Syg+ SpRo(I- S5oR) 1Sy,
Su+ S24§2(I - SZZﬁz)_lslz Sos(I - I(‘_2S22)_1f2 Sau+ Sz4ﬁ2(1 - Szzﬁz)_lssz Su+ Sz4§2(1 - Szzﬁz)_lsz;z
(51a)

6;12)1 CEIZ)(I - Szzﬁz)_lsm
C CP + CZ8y,(1 - Ry85) T,
~ = - ; (51b)
C;JZ,E% CP(I1-SyRy)'Ss,
Co CP(I-SyRy) 1Sy,

C 1 aa,Z aa,B aa,4>

1 63,2 63,3 63,4

(Ca,l + Ca,ZEZ(I - Szzﬁz)_lsm C (I~ ﬁzszz)_lri‘_z C.s+ Ca,2ﬁ2(1 - Szzﬁz)_lssz Cost Ca,2ﬁ2(1 - Szzﬁz)_lsz;z)

Cpr+ C,B,zﬁz(l - Szzﬁz)_lslz Cpo(I- ﬁzszz)_lfz Cps+ Cﬁ,zﬁz(l - Szzﬁz)_lssz Cpa+ Cﬁ,zﬁz(l - SZzﬁz)_lsu

(51c)

The derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block through
port 3 are listed as follows:

S Su Sy Sy
S S» Sy Sp
Si3 Sy Sy Sy
Siu Su Sy Sy
S11+ Sz Ry5(I- S33R73)71813 So1+Sg1R5(I- S33R¢3)’1323 Sg(I- RT3S33)71Ty3 Sy + Sz Rs(I- S33R73)7IS43
S+ SgR5(I- S33R13)_1S13 Sgo +SzoRy5(I - S33RT3)_1S23 Sso(I - R¢3S33)_1T13 Sso+SgR5(I- Sa3R13)_1S43
B T5(I-S33R5)7'Sy3 T 5(I- S33R3) 1Sg3 R 3+ T 38551 - Ri3S;5)7'T5 T 5(I- S33R;5)1Sy3 ’
S14+S3R5(I- S33RT3)'1S13 Sos+SgR3(I- S33R13)_1S23 Sg4(I- RT3S33)_1TT3 Sys+S3R5(I- Sssts)_ISm
(52a)
i.’319,1 CcPI- S33R15) 1S3
:p,2 B CY(1 - S35R3) 'Sy ’ (52b)
.3 CY +C85(I - R;5S33) 7' T3
Cou CY(I-S335R3)"Sy5
(60,1 C.. Cus 6&,4>
Coi Cuz Cpy Cpy

|

Co1+CosRis(I - S33R3) 'Sy C.2C, 3R 31— S55R 5)7'Sy; CosI-R3835)'Tys  Coy+CosRy5(I- Sssts)_ISL;s)
Cp1+CpRi3(I-SyR35) "8y Cpo+ CpsRis(I-S35R 158y CpaI-Ry3835)7'Tys Cpy+ CpRis(I-S55R ) 'S5/

(52¢)
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The derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block

through the port 4 are listed as follows:
S Su Sy Sy
S S» S S,
Siz Sy Sy Sy
S Su Sy Sy

S11+SyR 4T~ S44R14)71S14

Sip+ SR 4(I- S44R14)_1514

S5+ SR, I-SuR )'S,

T, (I- S44RL4)_1314

So1+ SR 4TI~ S44R14)’1524

Sos + SR 4(I- S44RL4)_1S24

Sos+ SR 4(I- S44R¢4)_lsz4
T, (I- S44R14)_1524

S31+S,4R 4TI~ S44R14)7ls34

Sgo+ SR |,(I- S44R¢4)_lss4

S35+ SR 4(I- S44R¢4)_1534
T, (I- S44RL4)_1834

Syu(I- RL4S44)71T14
Sy(I- R14S44)_1T¢4
Sy5(I- RL4S44)_1T14

Ry + TSI~ RL4S44)_1T¢4

(53a)
Cp. CY(I-SyuR ) 'Sy,
C2 C(I-SyR ;) 'Sy,
_ @ » , (53b)
C,s C,'(I-SyR 483y
6p,4 C;;l) + 024)844(1 - RL4S44)_1Ti4

(aa,l 60,2 60,3 60,4)

613,1 63,2 63,3 65,4
(Ca,l +C, R, (I- S44RL4)_IS14
Cp1+CpR (- S44R14)_1514

Next, with the use of the prepared S-matrix recursion
formulas, we can construct the total S matrix of the ex-
tended four-port cross block through consecutive step-by-
step procedure. At the first step, the S matrix of the com-
bined structure of two-port block and four-port cross block
through port 1 is analyzed using Eqgs. (50a)—(50c¢). The
combined structure can be viewed as a four-port block
with its own S matrix and internal coupling coefficients
operators. Hence, at the second step, the S-matrix formu-
las of the interconnection of the two-port block and the
four-port cross block through port 2 can be straightfor-
wardly applied to interconnect this combined four-port
block structure to a two-port block through port 2 with no
modification. By the same way, we can recursively apply
the S-matrix formulas to interconnect the combined four-
port block and a two-port block to build the extended four-
port cross block. This analysis procedure is illustrated in
Fig. 22.

For validating the developed GSMM formulas, the elec-
tric field distributions at each step of building the ex-
tended four-port cross block by the stated step-by-step in-
terconnection procedure are visualized. In Fig. 23, the
results of the cross-waveguide structure are shown. In
Fig. 23(a), the combined structure is illustrated. In Figs.
23(b)-23(e), the y-polarization electric field distributions
at steps 1, 2, 3, and 4 are presented, respectively. The field
visualization results are quite well-matched with the re-
sults of the previous work done by the finite difference

C,2+C, R ,(I- S44R¢4)_lsz4
Cpo+CpsR 4T~ S44R14)_lsz4

C,3+C, R, (I-S,R )'Ss

C, .- RL4S44)_1T14)
Cps+Cp R (I~ S44R¢4)_IS34 .

Cpa(d- R14S44)_1TL4
(53c)

time domain (FDTD) method [2]. For comparison, addi-
tional simulation results of the 7T-branch waveguide
structure [5] and the 90°-bend waveguide structure [6]
are presented, respectively, in Figs. 24 and 25.

6. CONCLUSION

The proposed scheme is composed of two main subtheo-
ries: (i) local Fourier modal analysis method for analyzing
internal eigenmodes of four-port cross blocks and (ii) gen-
eralized scattering-matrix method for modeling crossed
nanophotonic structures by interconnecting four two-port
blocks and a four-port block. The established modeling
and analysis on crossed nanophotonic structures is a ba-
sic element for modeling generalized large scale nanopho-
tonic networks. The general linear system theory of nano-
photonic networks will be reported through our successive
paper based on this paper.

In the aspects of methodology, the proposed local analy-
sis scheme is efficient since the local field analysis is per-
formed with the reasonable and practical assumption of
the field localization in nanophotonic structures. Instead
of computing whole structure of network, local regions oc-
cupied by functional photonic blocks are characterized by
the local Fourier modal analysis. Eventually this local
analysis scheme can provide an efficient method of three-
dimensional simulation of large scale nanophotonic net-
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Fig. 25. (Color online) (a) 90°-bend waveguide structure and
y-polarization electric field distributions at each step of building
the extended four-port cross block by the step-by-step intercon-
nection procedure: steps (b) 1, (¢) 2, (d) 3, and (e) 4.

works and systematic methods for the advanced design,
analysis, and fabrication of nanophotonic networks.

On the other hand, we have proposed a new theory of
the Fourier modal method that overcomes the present
theoretical limitation of the conventional Fourier modal
method. The proposed local Fourier modal analysis and
generalized scattering-matrix method have extended the
territory of the conventional Fourier modal method. The
conventional Fourier modal method is a Fourier analysis
theory for modeling method of multilayer structure com-
posed of layers having transverse periodic structures such
as periodic grating structures. At present, many people
think that the Fourier modal method has been almost
mature and the future issues of the Fourier modal
method should be focused on its applications. However,
this paper shows that the local Fourier modal method
with the generalized scattering-matrix method can have
unique advantages in large scale network modeling over
other conventional global electromagnetic analysis meth-
ods.
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