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We propose a novel electromagnetic analysis scheme for crossed nanophotonic structures. The developed
scheme is based on the mathematical modeling with the local Fourier modal analysis and the generalized
scattering-matrix method. The mathematical Bloch eigenmodes of two-port block and four-port intersection
block structures are analyzed by the local Fourier modal analysis. The interconnections of two-port blocks and
four-port intersection block are described by the generalized scattering-matrix method. This scheme provides
the linear system theory of general crossed nanophotonic structures. © 2008 Optical Society of America
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. INTRODUCTION
he mathematical modeling is a critical issue in nanopho-
onics. The dynamics of electromagnetic fields on a nanos-
ale can be described by the vectorial solution of the Max-
ell equations. Therefore, mathematical modeling and
umerical analysis methods for solving the Maxwell
quations have been researched intensively. At present,
here are various established methods of obtaining the
umerical solutions of the Maxwell equations. In general,
he methods can be classified into two types of space-
omain and spatial-frequency-domain methods. The
pace-domain methods represent the Maxwell equations
s partial differential equations in space domain and ana-
yze the numerical values of the field distributions at spa-
ial points. On the other hand, the spatial-frequency-
omain methods represent the Maxwell equations as
lgebraic linear equations in the spatial-frequency do-
ain and analyze the Fourier representation of the field

istribution. In the point of view of mathematical model-
ng, the spatial-frequency-domain method can give the

ore systematic and flexible approach than the space-
omain methods. A refined linear system theory of com-
lex electromagnetic structures can be built based on the
patial-frequency-domain method. In the spatial-
requency-domain method, the mathematical Bloch
odes represented by the pseudo-Fourier series span the

igensystems of the Maxwell equations. The electromag-
etic field distributions in a finite region are expressed by
he superposition of the Bloch eigenmodes with specific
oupling coefficients determined by the boundary condi-
ions. Within this framework, the Bloch eigenmodes con-
titute the system basis and the coupling coefficients of
he Bloch eigenmodes, which constitute spectral informa-
ion, are variables to be processed. Recently, this linear
ystem approach became much required in nanophoton-
0740-3224/08/040518-27/$15.00 © 2
cs. Large-scale system-level integration of nanophotonic
evices [1–6], i.e., nanophotonic network, is considered as
n ultimate point of the advances in nanophotonics. The
se of conventional methods for analyzing nanophotonic
etworks is almost impossible without some specific inno-
ations because of the limitation of computing resources.
he nanophotonic networks are composed of many and
arious photonic devices. To study the collective dynamics
f such nanophotonic networks, the system theory of the
anophotonic networks must be built. During the past de-
ades, one of the spatial-frequency-domain methods, the
ourier modal method (FMM) [7–11] has been intensively
esearched and many challenging problems related to the
oundation of the FMM have been overcome [12–19]. At
resent, the FMM is considered one of the most efficient
nd accurate electromagnetic analysis tools for optics and
hotonics. With the development of the FMM, the
cattering-matrix method (SMM) has been developed as a
table wave propagating algorithm in multilayered struc-
ures [20–24]. The scattering matrix ( S matrix) of an
lectromagnetic structure is actually a linear system rep-
esentation of that structure with the Bloch eigenmodes
s the system basis. We can have a view of any linear
lectromagnetic structure as a linear system having its
wn S matrix.

We can believe that a systematic linear system theory
f complex network structures can be built with the SMM
nd the FMM. The establishment of the linear system
heory of the electromagnetic structure on a nanoscale
an be considered as a main target of the mathematical
odeling in present nanophotonics. However, for achiev-

ng the objective, the conventional FMM and SMM must
e refined and extended. In this paper, as a prerequisite
tep for constructing a general linear system theory of
eneral nanophotonic networks, we propose a mathemati-
008 Optical Society of America
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al modeling of crossed nanophotonic structures with the
evelopment of the local Fourier modal analysis (LFMA)
nd the generalized SMM (GSMM).
This paper is organized as follows. In Section 2, the

our-port crossed nanophotonic structures are defined. In
ection 3, the LFMA of two-port blocks is described. In
ection 4, the LFMA of four-port blocks is described. In
ection 5, the GSMM is formulated for constructing four-
ort crossed photonic structures. In Section 6, concluding
emarks and perspectives of the proposed theory are
iven.

. FOUR-PORT CROSSED NANOPHOTONICS
TRUCTURES

n the near future of nanophotonics, global structures
uch as networks and circuits will become a main issue
ased on previous and present active research on local
tructures such as individual devices and elements. In
ig. 1, the collective system of such nanophotonic devices,
ore generally photonic blocks, is presented. Let us call

his kind of system a nanophotonic network. The func-
ional photonic blocks are represented by geometric fig-
res: circle, rectangles, and so on. The interaction of the
locks is denoted by bidirectional arrows between photo-
ic blocks such as two-port blocks, four-port cross blocks,
wo-port light sources, and general blocks having more
orts.
At present, such a network or global phenomena cannot

e correctly, or at least reasonably, analyzed without im-
ractical huge computing resources. Although the optical
elds act in accordance with the definite Maxwell equa-
ions, the information needed to represent the optical
eld is too huge for us to directly analyze. Therefore, the
evelopment of rigorous and efficient mathematical mod-
ling of nanophotonic networks is an urgent and impor-
ant theme at present.

For this, we can take a technical approach to deal with
uch global structures with an intuitive assumption.

Fig. 1. (a) Schematic of nanophotonic ne
irst, in practical nanophotonic networks, optical fields
re usually localized on engineered structures or devices
uch as waveguides and resonators. Thus we can obtain a
easonable solution of the Maxwell equations around
hese local areas where the optical field energy is not neg-
igible. Then, we should have a systematic mathematical

odel to describe the relationship and interactions be-
ween each locally analyzed region.

This concept is the motivation for the development of
he linear system theory of nanophotonic networks. In
his paper, as a prerequisite step for constructing a gen-
ral linear system theory, the electromagnetic analysis on
he basic element, four-port crossed nanophotonic struc-
ure, is investigated.

Figure 2 shows a schematic of a four-port cross block.
s an analysis example, a two-dimensional photonic crys-

al cross-waveguide structure [2] shown in Fig. 2(a) is
hosen. This cross-waveguide structure is composed of
ve subparts: ports 1–4 and the intersection cross block.
he complete characterizations of the four-port cross
lock and the two-port block are represented by the 4
4 and the 2�2 S matrix, respectively.
For convenience, let the S matrices of two-port blocks

laced along the transverse direction and those placed
long the longitudinal direction be distinguished by

S = �T� R�

R� T�
� , �1a�

S = �T↑ R↓

R↑ T↓
� . �1b�

he 4�4 S matrix of a four-port cross-block is defined by

S = �
S11 S21 S31 S41

S12 S22 S32 S42

S13 S23 S33 S43

S14 S24 S34 S44

� . �2�

(b) basic elements and interconnections.
twork,
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In two-dimensional geometry, four vertex points
x+,z−�, �x+,z+�, �x−,z−�, and �x−,z+� define the four bound-
ries where the cross block contacts ports 1–4. Figure 2(b)
hows the S-matrix diagram of photonic crystal cross-
aveguide structure.
For building the mathematical modeling of the de-

cribed nanophotonic structures, the following basic ele-
ents should be prepared.

(i) S matrices, Bloch eigenmodes represented by
seudo-Fourier series, coupling coefficient operators of
wo-port blocks placed along the transverse direction and
he longitudinal direction.

(ii) S matrices, Bloch eigenmodes represented by
seudo-Fourier series, coupling coefficient operators of
our-port blocks.

ig. 2. (Color online) (a) Photonic crystal cross waveguide struc-
ure, (b) S-matrix diagram of the photonic crystal cross wave-
uide structure.
(iii) Generalized recursion formulas for interconnect-
ng the S matrices of composing blocks and updating in-
ernal coupling coefficients operators of each block.

The analysis will be processed step-by-step. After com-
leting the analysis of the 4�4 S matrix of the four-port
ntersection block, ports 1–4 will be connected to the in-
ersection block consecutively. At each stage, the S matri-
es of the combined blocks will be updated. The detail of
his interconnection will be manifested in Section 5.

The proposed modeling scheme is made up of two key
ubtheories, LFMA and GSMM. The main task of the
FMA is to analyze the Bloch eigenmodes as the form of

he pseudo-Fourier representation and to manifest the S
atrix and the coupling coefficient matrix operator of the

lock. Conventional FMM is only applied to a one-
imensionally layered structure, i.e., a two-port block
tructure. The application of the conventional SMM is re-
tricted to two-port block structures with the combination
ith the FMM. This property has been considered an in-
erent limitation of the FMMs. However, the proposed
FMA overcomes this limitation and can successfully
nalyze the four-port cross blocks with four boundaries.
urthermore, the interconnections of two- and two-port
locks, four- and two-port blocks, and four- and four-port
locks are systematically described by the proposed
SMM.
In the LFMA, the local Fourier representation of inter-

al Bloch eigenmodes is identified as the mathematical
asis of internal electromagnetic field distributions and
he coupling coefficients of each eigenmode are deter-
ined to satisfy the transverse field continuation condi-

ions at the given four boundaries. The relationships be-
ween coupling coefficients of Bloch eigenmodes within
ach block in the interconnected structures are described
y the GSMM. The proposed analysis of four-port crossed
anophotonic structures provides a basic framework for
he general analysis of complex large-scale integrated
anophotonic networks.

. LOCAL FOURIER MODAL ANALYSIS OF
WO-PORT BLOCKS

n this section, the LFMA of two-port blocks is described.
he S matrix and coupling coefficient matrix operator of

wo-port blocks are analyzed by the LFMA.
The Bloch eigenmodes of the Maxwell equations take

he form of the pseudo-Fourier series

Ẽk = exp�j�kx,0x + ky,0y + kz,0z��Ek�x,y,z�, �3a�

H̃k = exp�j�kx,0x + ky,0y + kz,0z��Hk�x,y,z�, �3b�

here the mode envelops Ek�x ,y ,z� and Hk�x ,y ,z� are pe-
iodic functions with respect to x, y, and z and k indicates
he wave vector �kx,0 ,ky,0 ,kz,0�. Let us consider a Q-layer
ultilayer block M�1,Q� with the longitudinal size of �z as

hown in Fig. 3(a). The S-matrix S�1,Q� and coupling coef-
cient matrix operators C̃a and C̃b give a complete char-
cterization of the electromagnetic properties of the block
see Fig. 3(b)].



s
l
m
(
m
fi
t
m
F

p
b
s

w
c
m
g

d
e
f

m
a
p
=
v
s
c

F
a

F
n

H. Kim and B. Lee Vol. 25, No. 4 /April 2008 /J. Opt. Soc. Am. B 521
In addition, we can extract the Bloch eigenmodes by
olving the Bloch-mode eigenvalue equation [25] formu-
ated by the rigorous coupled-wave analysis (RCWA)

ethod and the extended scattering-matrix method
ESMM) [11,20]. In Fig. 4(a), the concept of the Bloch-

ode computation with the ESMM is illustrated. The
eld profile of a Bloch eigenmode at the right boundary
akes the form of the field profile at the left boundary
ultiplied by the eigenvalue �=exp�jkz,0� as indicated in
ig. 3(b).

ig. 3. (Color online) (a) Multilayer structure and (b) S-matrix
nd coupling coefficient matrix operator.
Let the Fourier spectra of the right- and left-direction
ropagating portions of a Bloch eigenmode at the left
oundary denoted by w� and w�, respectively. Then w� and w�
hould satisfy the Bloch mode condition

��w��
w��
� = �T��1,Q� R��1,Q�

R��1,Q� T��1,Q��� w��
�w��

� , �4a�

here T��1,Q�, R��1,Q�, R��1,Q�, and T��1,Q� are the S-matrix
omponents of the multilayer M�1,Q�. Equation (4a) can be
anipulated to the eigenvalue equation with � as the ei-

envalue:

�T��1,Q� 0

R��1,Q� − I��w��
w��
� = ��I − R��1,Q�

0 − T��1,Q���w��
w��
� . �4b�

Let the gth eigenvalue and eigenvector of Eq. (4b) be
enoted by �g and �w� g ,w�g�. Then the internal coupling co-
fficient of the gth Bloch eigenmode is determined by,
rom Eqs. (11e) and (11f) of [20],

Cg = C̃aw�� g + �gC̃bw�� g. �5�

In practical implementation, for confirming the nu-
erical stability in solving Eq. (4b), a two-step eigenvalue

nalysis should be adopted. Let the eigenvalues of the
ositive and negative eigenmodes be denoted by �+

exp�jkz,0
+ � and �−=exp�jkz,0

− �, respectively. The absolute
alue of the eigenvalue of negative eigenmode �− can be
o large to exceed the precision limitation of practical
omputers. As illustrated in Fig. 4, the eigenvalue equa-

ig. 4. Schematics of eigenvalue equations of (a) positive and (b)
egative Bloch eigenmodes.
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ions for obtaining positive and negative eigenmodes are
aken, respectively, as

�T��1,Q� 0

R��1,Q� − I��w��
w��
� = �+�I − R��1,Q�

0 − T��1,Q���w��
w��
� , �6a�

1

�−�T��1,Q� 0

R��1,Q� − I��w��
w��
� = �I − R��1,Q�

0 − T��1,Q���w��
w��
� . �6b�

Now, the obtained Bloch eigenmode holds the conven-
ional form of the RCWA, i.e., separate two-dimensional
seudo-Fourier representation at each staircase layer
ith its own coupling coefficients given as

E�q�,g
�1,Q� = 	

m=−M

M

	
n=−N

N


xE�q�,x,mng
�1,Q� �z� + yE�q�,y,mng

�1,Q� �z�

+ zE�q�,z,mng
�1,Q� �z��exp
j�kx,mx + ky,ny��, �7a�

H�q�,g
�1,Q� = 	

m=−M

M

	
n=−N

N


xH�q�,x,mng
�1,Q� �z� + yH�q�,y,mng

�1,Q� �z�

+ zH�q�,z,mng
�1,Q� �z��exp
j�kx,mx + ky,ny��, �7b�

here q is the layer index for 1�q�Q and x , y, and z in-
icate unit directional vectors. It is noted that the Fourier
oefficients of the electric field and the magnetic field in
qs. (7a) and (7b) are functions of the z variable. Let dq
enote the thickness of the qth layer and ln,n+m be defined
y ln,n+m=dn+dn+1+ ¯dn+m. Using the simple discrete
ourier transform (DFT), we can find the equivalent Fou-
ier expansion of these z-variable dependent Fourier coef-
cients as

exp�− jkz,0
�g��E�1�,x,mng

�1,Q� �z� for 0 � z � l1,1

exp�− jkz,0
�g��E�2�,x,mng

�1,Q� �z� for l1,1 � z � l1,2

]

exp�− jkz,0
�g��E�Q�,x,mng

�1,Q� �z� for l1,Q−1 � z � l1,Q

� 	
p=−H

H

Ex,m,n,p
�g� exp�jGz,pz�, �8�

here Gz,p is the z-direction reciprocal vector defined by
z,p= �2� /�z�p. By the same manner, we can find the

quivalent Fourier expansion of other Fourier coeffi-
ients. Therefore, the gth Bloch eigenmode takes the
seudo-Fourier representation as

E�g��x,y,z� = 	
m=−M

M

	
n=−N

N

	
p=−H

H

�Ex,m,n,p
�g� x + Ey,m,n,p

�g� y

+ Ez,m,n,p
�g� z�exp�j�kx,mx + ky,ny + kz,p

�g�z��,

�9a�
H�g��x,y,z� = 	
m=−M

M

	
n=−N

N

	
p=−H

H

�Hx,m,n,p
�g� x + Hy,m,n,p

�g� y

+ Hz,m,n,p
�g� z�exp�j�kx,mx + ky,ny + kz,p

�g�z��,

�9b�

here kz,p
�g� is defined by kz,p

�g� =kz,0
�g� +2�p /�z. This pseudo-

ourier representation is a basis for unfolding the LFMA
f the four-port intersection block in Section 4, which is a
ey feature of the proposed LFMA mostly distinguished
rom the conventional expressions, Eqs. (7a) and (7b), of
he conventional FMM. After obtaining the eigenvalues
nd eigenvectors of the main eigenvalue equation (4b),
he obtained eigenmodes must be classified into two cat-
gories, positive (forward) and negative (backward)
odes, with respect to eigenvalues holding one of the

orms, jkz,0
�g� =a�g�+ jb�g�, jkz,0

�g� =a�g�− jb�g�, jkz,0
�g� =−a�g�+ jb�g�,

nd jkz,0
�g� =−a�g�− jb�g� where a�g��0 and b�g��0. The eigen-

odes with eigenvalues of jkz,0
�g� =a�g�+ jb�g� or jkz,0

�g� =a�g�

jb�g� are referred to as negative mode and the notation

z,0
�g�− with the minus superscript is used to indicate the
egative mode. The eigenmodes with eigenvalues of jkz,0

�g�

−a�g�+ jb�g� and jkz,0
�g� =−a�g�− jb�g� are referred to as posi-

ive mode and the notation kz,0
�g�+ with the plus superscript

s used to indicate the positive mode. In particular, the
igenmodes with pure real eigenvalues of jkz,0

�g� = jb�g� and
kz,0

�g� =−jb�g� with a�g�=0 are classified to the positive mode.
he numbers of the positive and negative modes are de-
oted by M+ and M−, respectively. The sum of M+ and M−

s M++M−=4�2M+1��2N+1�. With these conventions, the
th positive �E�g�

+ ,H�g�
+ � and negative �E�g�

− ,H�g�
− � eigen-

odes are represented as, respectively,

E�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

�Ex,m,n,p
�g�± x + Ey,m,n,p

�g�± y

+ Ez,m,n,p
�g�± z�exp�j�kx,mx + ky,ny + kz,p

�g�±z��,

�10a�

H�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

�Hx,m,n,p
�g�± x + Hy,m,n,p

�g�± y

+ Hz,m,n,p
�g�± z�exp�j�kx,mx + ky,ny + kz,p

�g�±z��.

�10b�

The pseudo-Fourier representation of the Bloch eigen-
odes is the essential factor in the modeling and analysis

f four-port crossed nanophotonic structures that will be
escribed in Section 4. Hereafter, the Bloch eigenmodes
epresented by the pseudo-Fourier series are adopted as
he mathematical basis of the electromagnetic field distri-
utions.
As an example of the described LFMA, the Bloch eigen-
ode analysis of a two-dimensional photonic crystal
aveguide structure [26–29] is presented in Fig. 5. Figure
(a) shows a two-dimensional photonic crystal waveguide.
he period of the circular rod of the photonic crystal is de-
oted by a. The diameters of the rod, wavelength, and re-

ractive index of the rod are set to 0.4a, 2.44a, and 3.4,
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espectively. This waveguide structure is actually a
ingle-mode waveguide. This point can be confirmed by
nalyzing the obtained eigenvalues. In Figs. 5(b)–5(d), the
-polarization electric field, x-polarization magnetic field,
nd z-polarization magnetic field distributions of the fun-
amental mode are presented, respectively.
For convenience, let the two-port blocks be placed along

he transverse direction and those placed along the longi-
udinal direction be distinguished by the prefixes � and �,
espectively. Figure 6 illustrates three kinds of � blocks:
wo-port � block with finite size, two-port half-infinite �
lock with right boundary, and two-port half-infinite �
lock with left boundary. On the other hand, Fig. 7 illus-
rates three kinds of � blocks: two-port � block with finite
ize, two-port half-infinite � block with upper boundary,
nd two-port half-infinite � block with lower boundary.
In the representation of the field distributions in �

locks, the subscript � is also used. The reciprocal vectors
f � modes are denoted by �k�,x,m ,k�,y,n ,k�,z,p

�g� � and defined
y

�k�,x,m,k�,y,n,k�,z,p
�g� � = �kx,0 +

2�

Tx
m,ky,0 +

2�

Ty
n,k�,z

�g� +
2�

Tz
p� .

�11�

ig. 5. (Color online) (a) Two-dimensional photonic crystal wave
istribution, (c) x-polarization magnetic field distribution, (d) z-p
Then let us represent the Bloch eigenmodes of two-port
blocks as

E�,�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

��E�,x,m,n,p
�g�± x + E�,y,m,n,p

�g�± y + E�,z,m,n,p
�g�± z�

�exp�j�k�,x,mx + k�,y,ny + k�,z,p
�g�± �z − z����,

�12a�

H�,�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

��H�,x,m,n,p
�g�± x + H�,y,m,n,p

�g�± y + H�,z,m,n,p
�g�± z�

�exp�j�k�,x,mx + k�,y,ny + k�,z,p
�g�± �z − z����

�12b�

In the representation of the field distributions in �
locks, the subscript � is used. The reciprocal vectors of �

odes are denoted by �k�g� ,k ,k � and defined by

and the guided Bloch eigenmode: (b) y-polarization electric field
tion magnetic field distribution.
guide
olariza
�,x,m �,y,n �,z,p
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�k�,x,m
�g� ,k�,y,n,k�,z,p� = �k�,x,0

�g� +
2�

Tx
m,ky,0 +

2�

Ty
n,kz,0 +

2�

Tz
p� .

�13�

ig. 6. (Color online) (a) Two-port � block with finite size, (b)
wo-port half-infinite � block with right boundary, (c) two-port
alf-infinite � block with left boundary.

ig. 7. (Color online) (a) Two-port � block with finite size, (b)
nfinite � block with lower boundary.
The Bloch eigenmodes of two-port � blocks are repre-
ented by the pseudo-Fourier series with the subscript �
s

E�,�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

��E�,x,m,n,p
�g�± x + E�,y,m,n,p

�g�± y + E�,z,m,n,p
�g�± z�

�exp�j�k�,x,m
�g�± �x − x�� + k�,y,ny + k�,z,pz��,

�14a�

H�,�g�
± �x,y,z� = 	

m=−M

M

	
n=−N

N

	
p=−M

M

��H�,x,m,n,p
�g�± x + H�,y,m,n,p

�g�± y + H�,z,m,n,p
�g�± z�

�exp�j�k�,x,m
�g�± �x − x�� + k�,y,ny + k�,z,pz��.

�14b�

Let us note the meanings of the local coordinate of the
block, �x� ,y� ,z�� shown in Fig. 7(a). In practical compu-

ation, � blocks are analyzed on the local coordinate
x� ,y� ,z�� for convenience. When converting the informa-
ion obtained in the local coordinate �x� ,y� ,z�� to those in
he default coordinate �x ,y ,z� a careful consideration of
he following relations is required:

	��x�,y�,z�� = 	�z�,y�,− x��, �15a�


��x�,y�,z�� = 
�z�,y�,− x��, �15b�

�Ex,m,n,p,Ey,m,n,p,Ez,m,n,p� = �Ez�,p,n,−m,Ey�,p,n,−m,− Ex�,p,n,−m�,

�15c�

�Hx,m,n,p,Hy,m,n,p,Hz,m,n,p� = �Hz�,p,n,−m,Hy�,p,n,−m,

− Hx�,p,n,−m�. �15d�

Next, the S matrices of two-port blocks are derived. In
ig. 8, the bidirectional characterization of a two-port �
lock with the left boundary at z=z− and right-boundary
t z=z+ is schematically presented. The S-matrix compo-
ents are obtained by the following bidirectional charac-

rt half-infinite � block with upper boundary, (c) two-port half-
two-po
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erization procedure. Let us consider the left-to-right di-
ectional characterization of the multilayer for obtaining
he layer S matrix of this structure, S. The excitation field
f the left boundary, U�, the reflection field R�, and the
ransmission field T� are given, respectively, by

U� = 	
m=−M

M

	
n=−N

N

�u� x,m,nx + u� y,m,ny + u� z,m,nz�

�exp�j�kx,mx + ky,ny + kz,m,n�z − z−���, �16a�

R� = 	
m=−M

M

	
n=−N

N

�r�x,m,nx + r�y,m,ny + r�z,m,nz�

�exp�j�kx,mx + ky,ny − kz,m,n�z − z−���, �16b�

T� = 	
m=−M

M

	
n=−N

N

�t�x,m,nx + t�y,m,ny + t�z,m,nz�

�exp�j�kx,mx + ky,ny + kz,m,n�z − z+���. �16c�

By the same manner, the right-to-left characterization
s performed. In the case of the right-to-left characteriza-
ion; the excitation field of the right boundary, U�; the re-
ection field R�; and the transmission field T� are given, re-
pectively, by

ig. 8. (Color online) (a) Left-to-right and (b) right-to-left direc-
ional characterizations. The left and right boundaries are set at
=z− and z+, respectively.
U� = 	
m=−M

M

	
n=−N

N

�u�x,m,nx + u�y,m,ny + u�z,m,nz�

�exp�j�kx,mx + ky,ny − kz,m,n�z − z+���, �17a�

R� = 	
m=−M

M

	
n=−N

N

�r�x,m,nx + r�y,m,ny + r�z,m,nz�

�exp�j�kx,mx + ky,ny + kz,m,n�z − z+���, �17b�

T� = 	
m=−M

M

	
n=−N

N

�t�x,m,nx + t�y,m,ny + t�z,m,nz�

�exp�j�kx,mx + ky,ny − kz,m,n�z − z+���. �17c�

Then the transverse field continuation boundary condi-
ions of the left-to-right characterization and the right-to-
eft characterization of the two-port � blocks read, respec-
ively, as

�W�,h W�,h

V�,h − V�,h
��U�

R�
� = �W�,+�0� W�,−�z− − z+�

V�,+�0� V�,−�z− − z+��
��C�,a

+

C�,a
− � at z = z−, �18a�

�W�,h W�,h

V�,h − V�,h
��T�

0
� = �W�,+�z+ − z−� W�,−�0�

V�,+�z+ − z−� V�,−�0��
��C�,a

+

C�,a
− � at z = z+, �18b�

�W�,h W�,h

V�,h − V�,h
��0

T�
� = �W�,+�0� W�,−�z− − z+�

V�,+�0� V�,−�z− − z+��
��C�,b

+

C�,b
− � at z = z−, �18c�

�W�,h W�,h

V�,h − V�,h
��R�

U�
� = �W�,+�z+ − z−� W�,−�0�

V�,+�z+ − z−� V�,−�0��
��C�,b

+

C�,b
− � at z = z+, �18d�

here W�,h and V�,h are 
2�2M+1��2N+1��� 
2�2M+1�
�2N+1�� matrices given, respectively, by

W�,h = � I 0

0 I� , �19a�

V�,h = �
1

�
0

k�,x,mk�,y,n

k�,z,m,n

1

�
0

�k�,z,m,n
2 + k�,x,m

2 �

k�,z,m,n

−
1

�
0

�k�,y,n
2 + k�,z,m,n

2 �

k�,z,m,n
−

1

�
0

k�,y,nk�,x,m

k�,z,m,n

� .

�19b�
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W�,+�z� and V�,+�z� are 
2�2M+1��2N+1���M+ matri-
es indicating the part of the positive modes given, respec-
ively, by

W�,+�z� = � 	
p=−H

H

Ẽ�,y,m,n,p
�1�+ ejk�,z,p

�1�+ z
¯ 	

p=−H

H

Ẽ�,y,m,n,p
�M+�+ ejk�,z,p

�M+�+z

	
p=−H

H

Ẽ�,x,m,n,p
�1�+ ejk�,z,p

�1�+ z
¯ 	

p=−H

H

Ẽ�,x,m,n,p
�M+�+ ejk�,z,p

�M+�+z� ,

�19c�

V�,+�z� = � 	
p=−H

H

H̃�,y,m,n,p
�1�+ ejk�,z,p

�1�+ z
¯ 	

p=−H

H

H̃�,y,m,n,p
�M+�+ ejk�,z,p

�M+�+z

	
p=−H

H

H̃�,x,m,n,p
�1�+ ejk�,z,p

�1�+ z
¯ 	

p=−H

H

H̃�,x,m,n,p
�M+�+ ejk�,z,p

�M+�+z� .

�19d�

W�,−�z� and V�,−�z� are 
2�2M+1��2N+1���M− matri-
es indicating the part of the negative modes, given, re-

pectively, by (

�,h �,+ c

t

W�,−�z� = � 	
p=−H

H

Ẽ�,y,m,n,p
�1�− ejk�,z,p

�1�− z
¯ 	

p=−H

H

Ẽ�,y,m,n,p
�M−�− ejk�,z,p

�M−�−z

	
p=−H

H

Ẽ�,x,m,n,p
�1�− ejk�,z,p

�1�− z
¯ 	

p=−H

H

Ẽ�,x,m,n,p
�M−�− ejk�,z,p

�M−�−z� ,

�19e�

V�,−�z� = � 	
p=−H

H

H̃�,y,m,n,p
�1�− ejk�,z,p

�1�− z
¯ 	

p=−H

H

H̃�,y,m,n,p
�M−�− ejk�,z,p

�M−�−z

	
p=−H

H

H̃�,x,m,n,p
�1�− ejk�,z,p

�1�− z
¯ 	

p=−H

H

H̃�,x,m,n,p
�M−�− ejk�,z,p

�M−�−z� .

�19f�

U� and U� are the input operator, 
2�2M+1��2N+1��

2�2M+1��2N+1�� identity matrices. R� ,R�, and T� ,T� are

he reflection and transmission coefficient matrix opera-
ors, respectively.

The coupling coefficient operators S-matrix compo-
ents, C�,a

+ , C�,a
− , C�,b

+ , and C�,b
− are obtained by, from Eqs.
18a)–(18d),
�C�,a
+

C�,a
− � = � W�,h

−1 W�,+�0� + V�,h
−1 V�,+�0� W�,h

−1 W�,−�z− − z+� + V�,h
−1 V�,−�z− − z+�

W�,h
−1 W�,+�z+ − z−� − V�,h

−1 V�,+�z+ − z−� W�,h
−1 W�,−�0� − V�,h

−1 V�,−�0� �−1�2U�

0 � , �20a�

�C�,b
+

C�,b
− � = � W�,h

−1 W�,+�0� + V�,h
−1 V�,+�0� W�,h

−1 W�,−�z− − z+� + V�,h
−1 V�,−�z− − z+�

W�,h
−1 W�,+�z+ − z−� − V�,h

−1 V�,+�z+ − z−� W�,h
−1 W�,−�0� − V�,h

−1 V�,−�0� �−1� 0

2U�� . �20b�
Then, the layer S-matrix components, R�, T�, R�, and T�,
re given by

R� = W�,h
−1 
W�,+�0�C�,a

+ + W�,−�z− − z+�C�,a
− − W�,h�,

�21a�

T� = W�,h
−1 
W�,+�z+ − z−�C�,a

+ + W�,−�0�C�,a
− �, �21b�

R� = W�,h
−1 
W�,+�z+ − z−�C�,b

+ + W�,−�0�C�,b
− − W�,h�,

�21c�

T� = W�,h
−1 
W�,+�0�C�,b

+ + W�,−�z− − z+�C�,b
− �. �21d�

he boundary S-matrix [20] components, R�, T� , R� , and T�
f the half-infinite � block with right boundary are given
y

R� = − 
�W�,h�−1W�,−�zc�

− �V�,h�−1V�,−�zc��−1
�W�,h�−1W�,+�zc�

− �V �−1V �z ��, �22a�
T� = 
�W�,−�zc��−1W�,h

− �V�,−�zc��−1V�,h�−1
�W�,−�zc��−1W�,+�zc�

− �V�,−�zc��−1V�,+�zc��, �22b�

R� = − 
�W�,−�zc��−1W�,h

− �V�,−�zc��−1V�,h�−1
�W�,−�zc��−1W�,h

+ �V�,−�zc��−1V�,h�, �22c�

T� = 2
�W�,h�−1W�,−�zc� − �V�,h�−1V�,−�zc��−1. �22d�

The boundary S-matrix components, R�, T� , R� , and T� of
he half-infinite � block with left boundary are given by

R� = − 
�W�,+�zc��−1W�,h + �V�,+�zc��−1V�,h�−1

�
�W�,+�zc��−1W�,h − �V�,+�zc��−1V�,h�, �23a�

T� = 2
�W�,h�−1W�,+�zc� + �V�,h�−1V�,+�zc��−1, �23b�

R� = − 
�W�,h�−1W�,+�zc� + �V�,h�−1V�,+�zc��−1

�
�W �−1W �z � + �V �−1V �z ��, �23c�
�,h �,− c �,h �,− c
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T� = 
�W�,+�zc��−1W�,h

+ �V�,+�zc��−1V�,h�−1
�W�,+�zc��−1W�,−�zc�

− �V�,+�zc��−1V�,−�zc��. �23d�

By a similar manner, we can derive the layer S matrix
nd the boundary S matrices from the transverse field
ontinuation boundary conditions of the two-port �
locks. The boundary conditions of the down-to-up char-
cterization and the up-to-down characterization of the
wo-port � blocks read, respectively, as

�Y�,h Y�,h

Z�,h − Z�,h
��U↑

R↓
� = �Y�,+�0� Y�,−�x− − x+�

Z�,+�0� Z�,−�x− − x+��
��C�,a

+

C�,a
− � at x = x−, �24a�

�Y�,h Y�,h

Z�,h − Z�,h
��T↑

0 � = �Y�,+�x+ − x−� Y�,−�0�

Z�,+�x+ − x−� Z�,−�0��
��C�,a

+

C�,a
− � at x = x+, �24b�

�Y�,h Y�,h

Z�,h − Z�,h
�� 0

T↓
� = �Y�,+�0� Y�,−�x− − x+�

Z�,+�0� Z�,−�x− − x+��
��C�,b

+

C�,b
− � at x = x−, �24c�

�Y�,h Y�,h

Z�,h − Z�,h
��R↑

U↓
� = �Y�,+�x+ − x−� Y�,−�0�

Z�,+�x+ − x−� Z�,−�0��
��C�,b

+

C�,b
− � at x = x+, �24d�

here Y�,h and Z�,h are 
2�2M+1��2N+1��� 
2�2M+1�
�2N+1�� matrices given, respectively, by

Y�,h = � I 0

0 I� , �25a�

Z�,h = � −
1

�
0

k�,z,mk�,y,n

k�,x,m,n
−

1

�
0

�k�,x,m,n
2 + k�,z,m

2 �

k�,x,m,n

1

�
0

�k�,y,n
2 + k�,x,m,n

2 �

k�,x,m,n

1

�
0

k�,y,nk�,z,m

k�,x,m,n

� .

�25b�
C�,b �Y�,hY�,+�x+ − x−� − Z�,hZ�,+�x+ − x−��
Y�,+�z� and Z�,+�z� are 
2�2M+1��2N+1���M+ matrices
ndicating the part of the positive modes given, respec-
ively, by

Y�,+�x� = � 	
m=−M

M

Ẽ�,y,m,n,s
�1�+ ejkx,m

�1�+x
¯ 	

m=−M

M

Ẽ�,y,m,n,s
�M+�+ ejkx,m

�M+�+x

	
m=−M

M

Ẽ�,z,m,n,s
�1�+ ejkx,m

�1�+x
¯ 	

m=−M

M

Ẽ�,z,m,n,s
�M+�+ ejkx,m

�M+�+x� ,

�25c�

Z�,+�x� = � 	
m=−M

M

H̃�,y,m,n,s
�1�+ ejkx,m

�1�+x
¯ 	

m=−M

M

H̃�,y,m,n,s
�M+�+ ejkx,m

�M+�+x

	
m=−M

M

H̃�,z,m,n,s
�1�+ ejkx,m

�1�+x
¯ 	

m=−M

M

H̃�,z,m,n,s
�M+�+ ejkx,m

�M+�+x� .

�25d�

�,−�z� and Z�,−�z� are 
2�2M+1��2N+1���M− matrices
ndicating the part of the negative modes given respec-
ively, by

Y�,−�x� = � 	
m=−M

M

Ẽ�,y,m,n,s
�1�− ejkx,m

�1�−x
¯ 	

m=−M

M

Ẽ�,y,m,n,s
�M−�− ejkx,m

�M−�−x

	
m=−M

M

Ẽ�,z,m,n,s
�1�− ejkx,m

�1�−x
¯ 	

m=−M

M

Ẽ�,z,m,n,s
�M−�− ejkx,m

�M−�−x� ,

�25e�

Z�,−�x� = � 	
m=−M

M

H̃�,y,m,n,s
�1�− ejkx,m

�1�−x
¯ 	

m=−M

M

H̃�,y,m,n,s
�M−�− ejkx,m

�M−�−x

	
m=−M

M

H̃�,z,m,n,s
�1�− ejkx,m

�1�−x
¯ 	

m=−M

M

H̃�,z,m,n,s
�M−�− ejkx,m

�M−�−x� .

�25f�

The coupling coefficient operators S-matrix compo-
ents, C�,a

+ , C�,a
− , C�,b

+ , and C�,b
− are obtained, from Eqs.

24a)–(24d), by
�C�,a
+

C�,a
− � = � �Y�,h

−1 Y�,+�0� + Z�,h
−1 Z�,+�0�� �Y�,h

−1 Y�,−�x− − x+� + Z�,h
−1 Z�,−�x− − x+��

�Y�,h
−1 Y�,+�x+ − x−� − Z�,h

−1 Z�,+�x+ − x−�� �Y�,h
−1 Y�,−�0� − Z�,h

−1 Z�,−�0�� �−1�2U↑

0 � , �26a�

�C�,b
+

− � = � �Y�,h
−1 Y�,+�0� + Z�,h

−1 Z�,+�0�� �Y�,h
−1 Y�,−�x− − x+� + Z�,h

−1 Z�,−�x− − x+��
−1 −1 −1 −1 �−1� 0 � . �26b�
�Y�,hY�,−�0� − Z�,hZ�,−�0�� 2U↓
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he layer S-matrix components, R↓, T↑, R↑, and T↓ of the
wo-port � block are given by

R↓ = Y�,h
−1 
Y�,+�0�C�,a

+ + Y�,−�x− − x+�C�,a
− − Y�,h�,

�27a�

T↑ = Y�,h
−1 
Y�,+�x+ − x−�C�,a

+ + Y�,−�0�C�,a
− �, �27b�

R↑ = Y�,h
−1 
Y�,+�x+ − x−�C�,b

+ + Y�,−�0�C�,b
− − Y�,h�,

�27c�

T↓ = Y�,h
−1 
Y�,+�0�C�,b

+ + Y�,−�x− − x+�C�,b
− �. �27d�

The boundary S-matrix components, R↓, T↑, R↑, and T↓
f the half-infinite � block with upper boundary are given
y

R↓ = − 
�Y�,h�−1Y�,−�xc� − �Z�,h�−1Z�,−�xc��−1
�Y�,h�−1Y�,+�xc�

− �Z�,h�−1Z�,+�xc��, �28a�

T↑ = 
�Y�,−�xc��−1Y�,h − �Z�,−�xc��−1Z�,h�−1
�Y�,−�xc��−1Y�,+

− �Z�,−�xc��−1Z�,+�, �28b�

T↓ = 2
�Y�,h�−1Y�,−�xc� − �Z�,h�−1Z�,−�xc��−1, �28c�

R↑ = − 
�Y�,−�xc��−1Y�,h − �Z�,−�xc��−1Z�,h�−1
�Y�,−�xc��−1Y�,h

+ �Z�,−�xc��−1Z�,h�. �28d�

The boundary S-matrix components, R↓, T↑, R↑, and T↓
f the half-infinite � block with lower boundary are given
y

R↓ = − 
�Y�,+�xc��−1Y�,h + �Z�,+�xc��−1Z�,h�−1
�Y�,+�xc��−1Y�,h

− �Z�,+�xc��−1Z�,h�, �29a�

T↑ = 2
�Y�,h�−1Y�,+�xc� + �Z�,h�−1Z�,+�xc��−1, �29b�

R↑ = − 
�Y�,h�−1Y�,+�xc� + �Z�,h�−1Z�,+�xc��−1
�Y�,h�−1Y�,−�xc�

+ �Z�,h�−1Z�,−�xc��, �29c�

T↓ = 
�Y�,+�xc��−1Y�,h + �Z�,+�xc��−1Z�,h�−1
�Y�,+�xc��−1Y�,−

− �Z�,+�xc��−1Z�,−� . �29d�

. LOCAL FOURIER MODAL ANALYSIS OF
OUR-PORT INTERSECTION BLOCKS
s stated in Section 3, the eventual objective of this paper

s the complete mathematical modeling of four-port
rossed nanophotonic structures. As shown in Fig. 2(a),
wo-dimensional photonic crystal cross-waveguide struc-
ure is chosen as an analysis example. This cross-
aveguide structure is composed of five subparts; ports 1,
, 3, and 4 and the intersection cross block. In this sec-
ion, the LFMA for analyzing the Bloch eigenmodes and S
atrix of the four-port intersection block is described.
ventually, the 4�4 S matrices of four-port cross blocks
nterconnecting two-port � and � blocks will be developed
n Section 5 based on the theory described in this section.

Figures 9(a) and 9(b) show the separated intersection
lock of the photonic crystal cross-waveguide structure
nd its S-matrix diagram, respectively. In the proposed
FMA, the intersection block is embedded into a larger
lock with absorbing medium [or perfect matched layer
PML)] block [30] placed within the waveguide branches
onnected to ports as shown in Fig. 9(a). The internal part
ndicated by the dashed-line rectangle is the intersection
art of the analyzed cross-waveguide structure. The
ashed-line rectangle is the boundary of the intersection
lock defined in Fig. 9. The PML within each waveguide
ranch is necessary to model nonperiodic structure and
revent the eigenmode profile from being deteriorated by
nterference induced by periodicity. With the PML, the
ower flow through each waveguide branch is outward
ithout nonphysical reflection at the interface of the cross
lock. The basic intuitive assumption of the LFMA is the
lectromagnetic isolation among individual blocks by the
eld localization on nanophotonic structures.
The field representation of the Bloch eigenmode within

he four-port intersection block should be prepared. The
seudo-Fourier representations of the Bloch modes in the

and � blocks of the four-port intersection block are
aken, respectively, as the same forms of Eqs. (12) and
14). The total electromagnetic fields in the four-port cross
lock can be represented by the superposition of the ob-
ained � and �-Bloch eigenmodes

E�x,y,z� = 	
g=1

M+

C�,g
+ E�,�g�

+ �x,y,z� + 	
g=1

M−

C�,g
− E�,�g�

− �x,y,z�

+ 	
g=1

M+

C�,g
+ E�,�g�

+ �x,y,z� + 	
g=1

M−

C�,g
− E�,�g�

− �x,y,z�,

�30a�

H�x,y,z� = 	
g=1

M+

C�,g
+ H�,�g�

+ �x,y,z� + 	
g=1

M−

C�,g
− H�,�g�

− �x,y,z�

+ 	
g=1

M+

C�,g
+ H�,�g�

+ �x,y,z� + 	
g=1

M−

C�,g
− H�,�g�

− �x,y,z�,

�30b�

here C�,g
+ and C�,g

− are the coupling coefficients of the
ositive and the negative �-Bloch eigenmodes, respec-
ively. C�,g

+ and C�,g
− are the coupling coefficients of the

ositive and the negative �-Bloch eigenmodes, respec-
ively.

In addition, we take the Fourier series approximations
f the exponential functions of the eigenvalues in Eqs.
12a), (12b), (14a), and (14b) as follows:

exp�jk�,z,0
�g�± z� � 	

q=−H

H

��,q
�g�± exp�j

2�q

Tz
z� , �31a�

exp�jk�,x,0
�g�± x� � 	

q=−H

H

��,q
�g�± exp�j

2�q

Tx
x� , �31b�

here ��g�± and ��g�± are given, respectively, by
�,q �,q
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��,q
�g�± = sinc�kz,0

�g�±Tz

2�
− q� , �32a�

��,q
�g�± = sinc�kx,0

�g�±Tx

2�
− q� . �32b�

By substituting Eqs. (32a) and (32b) into the pseudo-
ourier representations of the Bloch eigenmodes Eqs.

12a), (12b), (14a), and (14b), we can obtain the Fourier
pproximation representation of the Bloch eigenmodes.
he resultant �-Bloch eigenmode representations read as

E� �,�g�
± �x,y,z� = exp�j�kx,0x + ky,0y�� 	

m=−M

M

	
n=−N

N

	
s=−H

H

��Ẽ�,x,m,n,s
�g�± x� + Ẽ�,y,m,n,s

�g�± y� + Ẽ�,z,m,n,s
�g�± z��

�exp�j�Gx,mx + Gy,ny + Gz,sz��, �33a�

H� �,�g�
± �x,y,z� = exp�j�kx,0x + ky,0y�� 	

m=−M

M

	
n=−N

N

	
s=−H

H

��H̃�,x,m,n,s
�g�± x� + H̃�,y,m,n,s

�g�± y� + H̃�,z,m,n,s
�g�± z��

�exp�j�G x + G y + G z��, �33b�

ig. 9. (Color online) (a) Intersection block model with PML
laced within four waveguide branches, (b) schematic of 4�4 S
atrix.
x,m y,n z,s
here the Fourier coefficients of the representations are
btained by

Ẽ�,x,m,n,s
�g�± x� + Ẽ�,y,m,n,s

�g�± y� + Ẽ�,z,m,n,s
�g�± z�

= 	
p=−H

H

���,s−p
�g�± E�,x,m,n,p

�g�± x� + ��,s−p
�g�± E�,y,m,n,p

�g�± y�

+ ��g�± E�g�± z��exp�− jk�g�±z �, �34a�

ig. 10. (Color online) Permittivity profiles of the intersection
locks of the two-dimensional photonic crystal (a) cross wave-
uide, (b) T-branch, and (c) 90°-bend structures.
�,s−p �,z,m,n,p z,p �
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ig. 11. (Color online) Dominant eigenmode profiles of the intersection block of the cross waveguide structure: (a) E�,�1�,y
+ , (b) E�,�1�,y

+ , (c)
+ , (d) H+ , (e) H+ , (f) H+ .
�,�1�,x �,�1�,x �,�1�,z �,�1�,z
ig. 12. (Color online) Dominant eigenmode profiles of the intersection block of the photonic crystal T-branch structure: (a) E�,�1�,y
+ , (b)

+ , (c) H+ , (d) H+ , (e) H+ , (f) H+ .
�,�1�,y �,�1�,x �,�1�,x �,�1�,z �,�1�,z
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ig. 13. (Color online) Dominant eigenmode profiles of the intersection block of the photonic crystal 90°-bend structure: (a) E�,�1�,y
+ , (b)

+ , (c) H+ , (d) H+ , (e) H+ , (f) H+ .
�,�1�,y �,�1�,x �,�1�,x �,�1�,z �,�1�,z
Fig. 14. Excitation of ports (a) 1, (b) 2, (c) 3, and (d) 4.
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H̃�,x,m,n,s
�g�± x� + H̃�,y,m,n,s

�g�± y� + H̃�,z,m,n,s
�g�± z�

= 	
p=−H

H

���,s−p
�g�± H�,x,m,n,p

�g�± x� + ��,s−p
�g�± H�,y,m,n,p

�g�± y�

+ ��,s−p
�g�± H�,z,m,n,p

�g�± z��exp�− jkz,p
�g�±z��, �34b�

he resultant �-Bloch eigenmode representations read as

E� �,�g�
± �x,y,z� = exp�j�kz,0z + ky,0y�� 	

s=−M

M

	
n=−N

N

	
p=−H

H

��Ẽ�,s,m,n,p
�g�± x� + Ẽ�,y,s,n,p

�g�± y� + Ẽ�,z,s,n,p
�g�± z��

�exp�j�Gx,sx + Gy,ny + Gz,pz��, �35a�

H� �,�g�
± �x,y,z� = exp�j�kz,0z + ky,0y�� 	

s=−M

M

	
n=−N

N

	
s=−H

H

��H̃�,x,s,n,p
�g�± x� + H̃�,y,s,n,p

�g�± y� + H̃�,z,s,n,p
�g�± z��

�exp�j�Gx,sx + Gy,ny + Gz,pz��, �35b�

here the Fourier coefficients of the representations are
btained by

Ẽ�,x,s,n,p
�g�± x� + Ẽ�,y,s,n,p

�g�± y� + Ẽ�,z,s,n,p
�g�± z�

= 	
m=−M

M

���,s−m
�g�± E�,x,m,n,p

�g�± x� + ��,s−m
�g�± E�,y,m,n,p

�g�± y�

+ ��,s−m
�g�± E�,z,m,n,p

�g�± z��exp�− jkx,m
�g�±x��, �36a�

H̃�,x,s,n,p
�g�+ x� + H̃�,y,s,n,p

�g�+ y� + H̃�,z,s,n,p
�g�+ z�

= 	
m=−M

M

���,s−m
�g�+ H�,x,m,n,p

�g�+ x� + ��,s−m
�g�+ H�,y,m,n,p

�g�+ y�

+ ��,s−m
�g�+ H�,z,m,n,p

�g�+ z��exp�− jkx,m
�g�±x��. �36b�

e blocks, (b) left half-infinite and right finite size blocks, (c) left
locks.
ig. 15. (Color online) LFMA results of the S-matrix character-
zation of (a) the intersection block of the photonic crystal cross
aveguide structure, (b) the photonic crystal T-branch structure,
nd (c) the photonic crystal 90°-bend structure.
ig. 16. Two-port � block interconnection: (a) left and right finite siz
nite size and right half-infinite blocks, (d) left and right half-infinite b
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ig. 17. Two-port � block interconnection: (a) upper and lower finite size blocks, (b) upper half-infinite and lower finite size blocks, (c)
pper finite size and lower half-infinite blocks, and (d) upper and lower half-infinite blocks.
ig. 18. (Color online) Diffraction of the fundamental guided Bloch eigenmode at the right endface of the two-dimensional half-infinite
hotonic crystal structure: (a) simulation schematic, (b) y-polarization electric field distribution, (c) x-polarization magnetic field distri-
ution, (d) z-polarization magnetic field distribution. Excitation of the fundamental guided Bloch eigenmode at the left endface of the
wo-dimensional half-infinite photonic crystal structure: (e) simulation schematic, (f) y-polarization electric field distribution, (g)
-polarization magnetic field distribution, (h) z-polarization magnetic field distribution.
ig. 19. (Color online) Transmission and reflection of two-dimensional finite sized photonic crystal waveguide by a normally incident
lane wave: (a) simulation schematic, (b) y-polarization electric field distribution, (c) x-polarization magnetic field distribution, (d)
-polarization magnetic field distribution.
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With the Fourier approximation of the pseudo-Fourier
loch eigenmode representations, we can find the appro-
riate boundary condition equations to obtain the S ma-
rix of the four-port intersection block.

Let us examine the �- and �-Bloch eigenmodes of three
xamples: two-dimensional photonic crystal cross-
aveguide structure [2], two-dimensional photonic crys-

al T-branch structure [5], and two-dimensional photonic
rystal 90°-bend structure [6], permittivity profiles of
hich are shown in Fig. 10(a)–10(c), respectively. The
ML blocks are placed in the waveguide channels within
he dummy region. The mode profiles of the dominant �-
nd �-Bloch eigenmode transferring electromagnetic

ig. 20. (Color online) (a) Interconnection of four two-port
locks and a four-port cross block, (b) extended four-port cross
lock composed of four two-port blocks and a four-port intersec-
ion block.
ower are analyzed by the LFMA with the Fourier trun-
ation order of M=14, N=0, and P=14.

Figures 11–13 show the dominant eigenmode profiles of
he intersection blocks of two-dimensional photonic crys-
al cross-waveguide structure, two-dimensional photonic
rystal T-branch structure, and two-dimensional photonic
rystal 90°-bend structure, respectively.

The 4�4 S-matrix is derived by solving four boundary
onditions at four boundaries of the intersection block.
et us denote four excitation fields at the ports 1–4 as U1,
2, U3, and U4 that are represented, respectively, by

U1 = 	
m=−M

M

	
n=−N

N

�u1,x,m,nx + u1,y,m,ny + u1,z,m,nz�

�exp�j�k�,x,mx + k�,y,ny + k�,z,m,n�z − z−���,

�37a�

U2 = 	
m=−M

M

	
n=−N

N

�u2,x,m,nx + u2,y,m,ny + u2,z,m,nz�

�exp�j�k�,x,mx + k�,y,ny − k�,z,m,n�z + z+���,

�37b�

U3 = 	
m=−M

M

	
n=−N

N

�u3,x,m,nx + u3,y,m,ny + u3,z,m,nz�

�exp�j�k�,x,m,n�x − x−� + k�,y,ny + k�,z,mz��, �37c�

U4 = 	
m=−M

M

	
n=−N

N

�u4,x,m,nx + u4,y,m,ny + u4,z,m,nz�

�exp�j�− k�,x,m,n�x − x+� + k�,y,ny + k�,z,mz��.

�37d�

et us denote the radiation fields (transmission and re-
ection fields) at ports 1–4 induced by the excitation of
ort i (for i=1, 2, 3, 4) as Ti1, Ti2, Ti3, and Ti4 that are
iven, respectively, by

Ti1 = 	
m=−M

M

	
n=−N

N

�ti1,x,m,nx + ti1,y,m,ny + ti1,z,m,nz�

�exp�j�k�,x,mx + k�,y,ny − k�,z,m,n�z − z−���,

�38a�

Ti2 = 	
m=−M

M

	
n=−N

N

�ti2,x,m,nx + ti2,y,m,ny + ti2,z,m,nz�

�exp�j�k�,x,mx + k�,y,ny + k�,z,m,n�z − z+���,

�38b�

Ti3 = 	
m=−M

M

	
n=−N

N

�ti3,x,m,nx + ti3,y,m,ny + ti3,z,m,nz�

�exp�j�− k�,x,m,n�x − x−� + k�,y,ny + k�,z,mz��,

�38c�
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Ti4 = 	
m=−M

M

	
n=−N

N

�ti4,x,m,nx + ti4,y,m,ny + ti4,z,m,nz�

�exp�j�k�,x,m,n�x − x+� + k�,y,ny + k�,z,mz��.

�38d�

he boundary conditions to obtain the scattering matrix
nd the coupling coefficients operators are described.
here are four boundaries as shown in Fig. 9. The bound-
ries for ports 1–4 are set up at z−=−Tz /2+
Tz, z+
Tz /2−
Tz, x−=−Tx /2+
Tx, and x+=Tx /2−
Tx, respec-

ively. 
T and 
T are the thickness of the x- and

Fig. 21. (Color online) Interconnectio
x z
-direction dummy areas, respectively. These are actually
he thickness of the PML blocks.

We can obtain the S-matrix components, S11,
12, S13, and S14 by simultaneously matching the
oundary condition at four boundaries, when port 1
s excited by the input field operator U1. Similarly we can
btain Si1, Si2, Si3, and Si4, when the port i is excited
y the input field operator Ui. This is illustrated in
ig. 14.
The transverse field continuation boundary conditions

t four boundaries can be expressed as the following ma-
rix equations:

ugh ports (a) 1, (b) 2, (c) 3, and (d) 4.
W�,h W�,h

V�,h − V�,h
��U1 0 0 0

S11 S21 S31 S41
� = �W̃�,+�z−� W̃�,−�z−�

Ṽ�,+�z−� Ṽ�,−�z−�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− �
+ �W̃�,+�z−� W̃�,−�z−�

Ṽ�,+�z−� Ṽ�,−�z−�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− �, at z = z−, �39a�

W�,h W�,h

V�,h − V�,h
��S12 S22 S32 S42

0 U2 0 0 � = �W̃�,+�z+� W̃�,−�z+�

Ṽ�,+�z+� Ṽ�,−�z+�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− �
+ �W̃�,+�z+� W̃�,−�z+�

Ṽ�,+�z+� Ṽ�,−�z+�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− � at z = z+, �39b�
n thro
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Y�,h Y�,h

Z�,h − Z�,h
�� 0 0 U3 0

S13 S23 S33 S43
� = �Ỹ�,+�x−� Ỹ�,−�x−�

Z̃�,+�x−� Z̃�,−�x−�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− �
+ �Ỹ�,+�x−� Ỹ�,−�x−�

Z̃�,+�x−� Z̃�,−�x−�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− � at x = x−, �39c�

Y�,h Y�,h

Z�,h − Z�,h
��S14 S24 S34 S44

0 0 0 U4
� = �Ỹ�,+�x+� Ỹ�,−�x+�

Z̃�,+�x+� Z̃�,−�x+�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− �
+ �Ỹ�,+�x+� Ỹ�,−�x+�

Z̃�,+�x+� Z̃�,−�x+�
��C�,1

+ C�,2
+ C�,3

+ C�,4
+

C�,1
− C�,2

− C�,3
− C�,4

− � at x = x+, �39d�
a
Z

F
e
b

here W̃�,+�z�, W̃�,−�z�, Ṽ�,+�z�, Ṽ�,−�z�, W̃�,+�z�, W̃�,−�z�,
˜

�,+�z�, and Ṽ�,−�z� are defined, respectively, by

W̃�,±�z� = � 	
s=−H

H

Ẽ�,y,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

Ẽ�,y,m,n,s
�M±�± ejGz,sz

	
s=−H

H

Ẽ�,x,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

Ẽ�,x,m,n,s
�M±�± ejGz,sz� ,

�40a�

Ṽ�,±�z� = � 	
s=−H

H

H̃�,y,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

H̃�,y,m,n,s
�M±�± ejGz,sz

	
s=−H

H

H̃�,x,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

H̃�,x,m,n,s
�M±�± ejGz,sz� ,

�40b�

W̃�,±�z� = � 	
s=−H

H

Ẽ�,y,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

Ẽ�,y,m,n,s
�M±�± ejGz,sz

	
s=−H

H

Ẽ�,x,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

Ẽ�,x,m,n,s
�M±�± ejGz,sz� ,

�40c�

Ṽ�,±�z� = � 	
s=−H

H

H̃�,y,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

H̃�,y,m,n,s
�M±�± ejGz,sz

	
s=−H

H

H̃�,x,m,n,s
�1�± ejGz,sz ¯ 	

s=−H

H

H̃�,x,m,n,s
�M±�± ejGz,sz� ,

�40d�
nd Ỹ�,+�x�, Ỹ�,−�x�, Z̃�,+�x�, Z̃�,−�x�, Ỹ�,+�x�, Ỹ�,−�x�,
˜

�,+�x�, and Z̃�,−�x� are defined, respectively, by

Ỹ�,±�x� = � 	
m=−M

M

Ẽ�,y,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

Ẽ�,y,m,n,s
�M±�± ejGx,mx

	
m=−M

M

Ẽ�,z,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

Ẽ�,z,m,n,s
�M±�± ejGx,mx� ,

�41a�

Z̃�,+�x� = � 	
m=−M

M

H̃�,y,m,n,s
�1�+ ejGx,mx

¯ 	
m=−M

M

H̃�,y,m,n,s
�M+�+ ejGx,mx

	
m=−M

M

H̃�,z,m,n,s
�1�+ ejGx,mx

¯ 	
m=−M

M

H̃�,z,m,n,s
�M+�+ ejGx,mx� ,

�41b�

Ỹ�,±�x� = � 	
m=−M

M

Ẽ�,y,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

Ẽ�,y,m,n,s
�M±�± ejGx,mx

	
m=−M

M

Ẽ�,z,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

Ẽ�,z,m,n,s
�M+�± ejGx,mx� ,

�41c�

Z̃�,±�x� = � 	
m=−M

M

H̃�,y,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

H̃�,y,m,n,s
�M±�± ejGx,mx

	
m=−M

M

H̃�,z,m,n,s
�1�± ejGx,mx

¯ 	
m=−M

M

H̃�,z,m,n,s
�M±�± ejGx,mx� .

�41d�

rom Eqs. (39a)–(39d), the coupling coefficient matrix op-
rators C�,i

+ ,C�,i
− ,C�,i

+ , and C�,i
− for i=1, 2, 3, 4 are obtained

y
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C�,i
+

C�,i
−

C�,i
+

C�,i
−
�
=�

�W̃�,h
−1 W̃�,+�z−� + Ṽ�,h

−1 Ṽ�,+�z−�� �W̃�,h
−1 W̃�,−�z−� + Ṽ�,h

−1 Ṽ�,−�z−�� �W̃�,h
−1 W̃�,+�z−� + Ṽ�,h

−1 Ṽ�,+�z−�� �W̃�,h
−1 W̃�,−�z−� + Ṽ�,h

−1 Ṽ�,−�z−��

�W̃�,h
−1 W̃�,+�z+� − Ṽ�,h

−1 Ṽ�,+�z+�� �W̃�,h
−1 W̃�,−�z+� − Ṽ�,h

−1 Ṽ�,−�z+�� �W̃�,h
−1 W̃�,+�z+� − Ṽ�,h

−1 Ṽ�,+�z+�� �W̃�,h
−1 W̃�,−�z+� − Ṽ�,h

−1 Ṽ�,−�z+��

�Ỹ�,h
−1 Ỹ�,+�x−� + Z̃�,h

−1 Z̃�,+�x−�� �Ỹ�,h
−1 Ỹ�,−�x−� + Z̃�,h

−1 Z̃�,−�x−�� �Ỹ�,h
−1 Ỹ�,+�x−� + Z̃�,h

−1 Z̃�,+�x−�� �Ỹ�,h
−1 Ỹ�,−�x−� + Z̃�,h

−1 Z̃�,−�x−��

�Ỹ�,h
−1 Ỹ�,+�x+� − Z̃�,h

−1 Z̃�,+�x+�� �Ỹ�,h
−1 Ỹ�,−�x+� − Z̃�,h

−1 Z̃�,−�x+�� �Ỹ�,h
−1 Ỹ�,+�x+� − Z̃�,h

−1 Z̃�,+�x+�� �Ỹ�,h
−1 Ỹ�,−�x+� − Z̃�,h

−1 Z̃�,−�x+��
�

−1

�

2U1�1i

2U2�2i

2U3�3i

2U4�4i

� . �42�
The S-matrix components, Si1, Si2, Si3, and Si4 are also
btained, respectively, from Eqs. (39a)–(39d),

Si1 = W�,h
−1 
W̃�,+�z−�C�,i

+ + W̃�,−�z−�C�,i
− + W̃�,+�z−�C�,i

+

+ W̃�,−�z−�C�,i
− − W�,h�1i�, �43a�

ig. 22. (Color online) Building the extended four-port cross blo
lock through port 1, (b) step 2: interconnection of a two-port b
nterconnection of a two-port block to the combined four-port cros
lock by the interconnection of a two-port block to the combined
Si2 = W�,h
−1 
W̃�,+�z+�C�,i

+ + W̃�,−�z+�C�,i
− + W̃�,+�z+�C�,i

+

+ W̃�,−�z+�C�,i
− − W�,h�2i�, �43b�

step 1: interconnection of a two-port block to the four-port cross
the combined four-port cross block through port 2, (c) step 3:
through port 3, (d) step 4: building the extended four-port cross

ort through port 4.
ck: (a)
lock to
s block
four-p
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Si3 = Y�,h
−1 
Ỹ�,+�x−�C�,i

+ + Ỹ�,−�x−�C�,i
− + Ỹ�,+�x−�C�,i

+

+ Ỹ�,−�x−�C�,i
− − Y�,h�3i�, �43c�

Si4 = Y�,h
−1 
Ỹ�,+�x+�C�,i

+ + Ỹ�,−�x+�C�,i
− + Ỹ�,+�x+�C�,i

+

+ Ỹ�,−�x+�C�,i
− − Y�,h�4i�. �43d�

We can easily understand that the S-matrix and cou-
ling coefficients equations of the two-port blocks of Eqs.
20a), (20b), (21a)–(21d), (26a), (26b), (27a), and (27b) are
he special cases of the above-stated equations of the four-
ort cross blocks.
The validity of the derived formulas is examined by the

isualization of field distributions when a normally inci-
ent plane wave impinges on the port 1 interface of the
ntersection block. Figures 15(a)–15(c) illustrate the
FMA results of the S-matrix characterization of the in-

ersection block of the photonic crystal cross-waveguide
tructure, the T-branch structure, and the 90°-bend struc-
ure, respectively. Here the regions of ports 1–4 are free
pace. We can see that the field boundary conditions are
ell-matched and the field continuity is conserved.

. GENERALIZED SCATTERING-MATRIX
ETHOD

he S-matrix characterization of the four-port intersec-
ion block provides a basis to construct the GSMM for de-

ig. 23. (Color online) (a) Cross waveguide structure and
-polarization electric field distributions at each step of building
he extended four-port cross block by the step-by-step intercon-
ection procedure: steps (b) 1, (c) 2, (d) 3, and (e) 4.
cribing general nanophotonic networks. In this section,
he GSMM for the four-port cross nanophotonic structure
omposed of four two-port blocks and a four-port intersec-
ion block is developed. In Subsection 5.A, the intercon-
ection of two-port blocks is described with the 2�2
-matrix formulation. In Subsection 5.B, the 4�4 GSMM
epresenting the interconnection of a four-port intersec-
ion block and four two-port blocks is developed.

. Interconnection of Two-Port Blocks
he interconnection of two-port blocks can be described
y the 2�2 S-matrix model. In Figs. 16 and 17, four
inds of interconnection of two-port � and � blocks are il-

ustrated. The S matrices of the interconnected blocks are
stablished in Section 4.

Let us assume two two-port � blocks with finite size
hat are characterized by respective S matrix S�1,1� and
�2,2�. The layer S matrix of the multilayer structure, i.e.,

he interconnected structure, S�1,2� and its coupling coef-
cient matrix operator is obtained by the ESMM [11,20].
The directional characteristics of multilayer can be ob-

ained by properly combining the obtained matrix opera-
ors of single layers through the Redheffer’s star product
elation S�1,2�=S�1,1�

*S�2,2� described in [11,20].
The reflection and transmission matrix operators,

�1,2�, T� �1,2�, R� �1,2�, and T��1,2� of S�1,2� of the multilayer are
btained by the Redheffer’s star product relation

ig. 24. (Color online) (a) T-branch waveguide structure and
-polarization electric field distributions at each step of building
he extended four-port cross block by the step-by-step intercon-
ection procedure: steps (b) 1, (c) 2, (d) 3, and (e) 4.
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R��1,2� = R��1,1� + T��1,1�
�I − R��2,2�R� �1,1��−1�R��2,2�T� �1,1�,

�44a�

T� �1,2� = T� �2,2�
�I − R� �1,1�R��2,2��−1�T� �1,1�, �44b�

R� �1,2� = R� �2,2� + T� �2,2�
�I − R� �1,1�R��2,2��−1�R� �1,1�T��2,2�,

�44c�

T��1,2� = T��1,1�
�I − R��2,2�R� �1,1��−1�T��2,2�. �44d�

Let us denote the internal coupling coefficient matrix
perators of the combined multilayer as C̃�,a,�1,2�

�1,2� and
˜

�,b,�1,2�
�1,2� . Here C̃�,a,�1,2�

�1,2� and C̃�,b,�1,2�
�1,2� are 
4�2M+1��2N

1��� 
8�2M+1��2N+1�� matrices given by

C̃�,a,�1,2�
�1,2� = 
C�,a,�1�

�1,2� ,C�,a,�2�
�1,2� �, �45a�
t
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C̃�,b,�1,2�
�1,2� = 
C�,b,�1�

�1,2� ,C�,b,�2�
�1,2� �, �45b�

here �Ca,1
�1,2� ,Cb,1

�1,2�� and �Ca,2
�1,2� ,Cb,2

�1,2�� are the respective
oupling coefficient matrix operators corresponding to the
rst and second layers. Then the formulas of the internal
oupling coefficients are derived, by the extended star
roduct of the ESMM, as

�Ca,�1�
�1,2�

Cb,�1�
�1,2�� = �Ca,�1�

�1,1� + Cb,�1�
�1,1��I − R��2,2�R� �1,1��−1R��2,2�T� �1,1�

Cb,�1�
�1,1��I − R��2,2�R� �1,1��−1T��2,2� � ,

�46a�

�Ca,�2�
�1,2�

Cb,�2�
�1,2�� = � Ca,�2�

�2,2��I − R� �1,1�R��2,2��−1T� �1,1�

Cb,�2�
�2,2� + Ca,�2�

�2,2��I − R� �1,1�R��2,2��−1R� �1,1�T��2,2�� .

�46b�

The layer S matrix and the coupling coefficient matrix
f the multilayer M�1,N� can be obtained by

S�1,N� = S�1,1� S�2,2�
¯ S�N−1,N−1� S�N,N�, �47a�
* * * *
�C̃�,a,�1,N�
�1,N� ,C̃�,b,�1,N�

�1,N� � = �C̃�,a,�1,1�
�1,1� ,C̃�,b,�1,1�

�1,1� � * �C̃�,a,�2,2�
�2,2� ,C̃�,b,�2,2�

�2,2� � * ¯ * �C̃�,a,�N−1,N−1�
�N−1,N−1� ,C̃�,b,�N−1,N−1�

�N−1,N−1� � * �C̃�,a,�N,N�
�N,N� ,C̃�,b,�N,N�

�N,N� �.

�47b�
With the above results, we can construct the total S
atrix of the whole multilayer M�0,N+1�. At the first step,

he S matrix S�0,N� of the multilayer M�0,N� is derived by
he Redheffer’s star product of S�0,0� of Eqs. (22a)–(22d)
nd S�1,N� of Eq. (47a) as

S�0,N� = S�0,0�
* S�1,N�. �48a�

The coupling coefficient matrices C�,a,�k�
�0,N� and C�,b,�k�

�0,N� �1
k�N� of the layers L1–LN in M�0,N� are given as [20]

�Ca,�k�
�0,N�,Cb,�k�

�0,N�� = �Ca,�k�
�1,N��I − R� �0,0�R��1,N��−1T� �0,0�,Cb,�k�

�1,N�

+ Ca,�k�
�1,N��I − R� �0,0�R��1,N��−1R� �0,0�T��1,N��.

�48b�

he total S matrix S�0,N+1� of the multilayer M�0,N+1� is
aken as

S�0,N+1� = S�0,N�
* S�N+1,N+1�. �49a�

he final coupling coefficient matrices Ca,�k�
�0,N+1� and

b,�k�
�0,N+1� �1�k�N� of the layers L1–LN in M�0,N+1� are ob-

ained as

�Ca,�k�
�0,N+1�,Cb,�k�

�0,N+1�� = �Ca,�k�
�0,N� + Cb,�k�

�0,N��I − R��N+1,N+1�R� �0,N��−1

�R��N+1,N+1�T� �0,N�,Cb,�k�
�0,N��I

− R��N+1,N+1�R� �0,N��−1T��N+1,N+1��. �49b�
The S matrix S�0,N+1� and the coupling coefficient ma-
rices, Ca,�k�

�0,N+1� and Cb,�k�
�0,N+1�, provide the complete charac-

erization of the multilayer M�0,N+1�.
Using the boundary S-matrix formulas and the previ-

usly analyzed Bloch eigenmodes, we present the reflec-
ion and transmission characteristics of the fundamental
uided Bloch eigenmode of the half-infinite two-
imensional photonic crystal waveguide structure in Fig.
8. Figure 18(a) illustrates that the fundamental guided
loch eignmode is incident on the end face of the photonic
rystal waveguide. The backward propagating guided
loch mode is reflected and the diffraction field distribu-

ion is generated at the interface of the end face of the
hotonic crystal waveguide and free space. The
-polarization electric field, x-polarization magnetic elec-
ric field, and z-polarization magnetic field distributions
re shown in Figs. 18(b)–18(d), respectively. In Fig. 18(e),
he excitation of the fundamental guided Bloch eigen-
ode by a normally incident plane wave from free space

egion to the interface is presented. The y-polarization
lectric field, x-polarization magnetic field, and
-polarization magnetic field distributions are shown in
igs. 18(f)–18(h), respectively.
With the layer S-matrix formulas, the reflection and

ransmission characteristics of the finite sized two-
imensional photonic crystal waveguide structure are
nalyzed. Figure 19(a) illustrates that a y-polarization
lane wave is normally incident from the left free space
n the left end face of the photonic crystal waveguide and
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diffraction field distribution is generated in the right
ree space region. The y-polarization electric field,
-polarization magnetic electric field, and z-polarization
agnetic field distributions are shown in Figs.

9(b)–19(d), respectively.

. Interconnection of Four-Port Block and Two-Port
locks
n this section, the development of the 4�4 S-matrix
odel for the four-port block composed of two-port blocks

nd four-port cross block is elucidated. Figure 20 shows
he S-matrix model of the four-port crossed nanophotonic
tructure that is investigated in this section.

We can take a step-by-step approach to obtain the total
matrix of this four-port cross nanophotonic structure.

efore obtaining total S matrix, we need to manifest the
nterconnections of a two-port block and a four-port cross
lock. In Fig. 21, the interconnection of a two-port block
nd a four-port cross block through the port i is illus-
rated. The S-matrix components of the two-port block
re denoted, with the subscript indicating the connected

� � � �
ort number, by Ri, Ti, Ri, Ti �i=1,2� and R↑i, T↓i, R↓i, T↑i
i=3,4�, respectively. The internal coupling coefficient
atrix operators of the two-port block are denoted, with

he superscript indicating the connected port number, by

a
�i� and Cb

�i�, respectively.
By the same ray-tracing approach addressed in [20], all

omponents of the total S matrix of the connected struc-
ure can be easily derived. The internal infinite multiple
eflections through the four-port of the intersection block
nd a two-port block are intuitively formulated to the re-
ursion equation of the S-matrix components and the cou-
ling coefficient matrix operators.
In the derived formulas, the tilde notation is used in

enoting the components of the total S matrix. C̃p,1
�1� , C̃p,2

�1� ,
˜

p,2
�1� , and C̃p,3

�1� indicate the coupling coefficient matrix op-
rators of the two-port block induced by the excitations of
arts 1–4, respectively. The superscript (1) means the
ort index through which the two-port block is connected
o the four-port cross block. The derived S matrix recur-
ion formulas of the interconnection of the two-port block
nd the four-port cross block through port 1 are listed as
ollows:
�
S̃11 S̃21 S̃31 S̃41

S̃12 S̃22 S̃32 S̃42

S̃13 S̃23 S̃33 S̃43

S̃14 S̃24 S̃34 S̃44

�
=�

R�1 + T�1S11�I − R� 1S11�−1T� 1 T�1�I − S11R� 1�−1S21 T�1�I − S11R� 1�−1S31 T�1�I − S11R� 1�−1S41

S12�I − R� 1S11�−1T� 1 S22 + S12R� 1�I − S11R� 1�−1S21 S32 + S12R� 1�I − S11R� 1�−1S31 S42 + S12R� 1�I − S11R� 1�−1S41

S13�I − R� 1S11�−1T� 1 S23 + S13R� 1�I − S11R� 1�−1S21 S33 + S13R� 1�I − S11R� 1�−1S31 S43 + S13R� 1�I − S11R� 1�−1S41

S14�I − R� 1S11�−1T� 1 S24 + S14R� 1�I − S11R� 1�−1S21 S34 + S14R� 1�I − S11R� 1�−1S31 S44 + S14R� 1�I − S11R� 1�−1S41

� ,

�50a�

�
C̃p,1

�1�

C̃p,2
�1�

C̃p,3
�1�

C̃p,4
�1�
� =�

Ca
�1� + Cb

�1�S11�I − R�1S11�−1T� 1

Cb
�1��I − S11R� 1�−1S21

Cb
�1��I − S11R� 1�−1S31

Cb
�1��I − S11R� 1�−1S41

� , �50b�

�C̃�,1 C̃�,2 C̃�,3 C̃�,4

C̃�,1 C̃�,2 C̃�,3 C̃�,4
�

=�C�,1�I − R� 1S11�−1T� 1 C�,2 + C�,1R� 1�I − S11R� 1�−1S21 C�,3 + C�,1R� 1�I − S11R� 1�−1S31 C�,4 + C�,1R� 1�I − S11R� 1�−1S41

C�,1�I − R� 1S11�−1T� 1 C�,2 + C�,1R� 1�I − S11R� 1�−1S21 C�,3 + C�,1R� 1�I − S11R� 1�−1S31 C�,4 + C�,1�I − S11R� 1�−1S41
� .

�50c�

he derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block through
ort 2 are listed as follows:
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�
S̃11 S̃21 S̃31 S̃41

S̃12 S̃22 S̃32 S̃42

S̃13 S̃23 S̃33 S̃43

S̃14 S̃24 S̃34 S̃44

�
=�

S11 + S21R�2�I − S22R�2�−1S12 S21�I − R�2S22�−1T� 2 S31 + S21R�2�I − S22R�2�−1S32 S41 + S21R�2�I − S22R�2�−1S42

T� 2�I − S22R�2�−1S12 R� 2 + T� 2S22�I − R�2S22�−1T� 2 T� 2�I − S22R�2�−1S32 T� 2�I − S22R�2�−1S42

S13 + S23R�2�I − S22R�2�−1S12 S23�I − R�2S22�−1T�2 S33 + S23R�2�I − S22R�2�−1S32 S43 + S23R�2�I − S22R�2�−1S42

S14 + S24R�2�I − S22R�2�−1S12 S24�I − R�2S22�−1T�2 S34 + S24R�2�I − S22R�2�−1S32 S44 + S24R�2�I − S22R�2�−1S42

� ,

�51a�

�
C̃p,1

�2�

C̃p,2
�2�

C̃p,3
�2�

C̃p,4
�2�
� =�

Ca
�2��I − S22R�2�−1S12

Cb
�2� + Ca

�2�S22�I − R�2S22�−1T�2

Ca
�2��I − S22R�2�−1S32

Ca
�2��I − S22R�2�−1S42

� , �51b�

�C̃�,1 C̃�,2 C̃�,3 C̃�,4

C̃�,1 C̃�,2 C̃�,3 C̃�,4
�

=�C�,1 + C�,2R�2�I − S22R�2�−1S12 C�,2�I − R�2S22�−1T�2 C�,3 + C�,2R�2�I − S22R�2�−1S32 C�,4 + C�,2R�2�I − S22R�2�−1S42

C�,1 + C�,2R�2�I − S22R�2�−1S12 C�,2�I − R�2S22�−1T�2 C�,3 + C�,2R�2�I − S22R�2�−1S32 C�,4 + C�,2R�2�I − S22R�2�−1S42
� .

�51c�

he derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block through
ort 3 are listed as follows:

�
S̃11 S̃21 S̃31 S̃41

S̃12 S̃22 S̃32 S̃42

S̃13 S̃23 S̃33 S̃43

S̃14 S̃24 S̃34 S̃44

�
= �

S11 + S31R↑3�I − S33R↑3�−1S13 S21 + S31R↑3�I − S33R↑3�−1S23 S31�I − R↑3S33�−1T↑3 S41 + S31R↑3�I − S33R↑3�−1S43

S12 + S32R↑3�I − S33R↑3�−1S13 S22 + S32R↑3�I − S33R↑3�−1S23 S32�I − R↑3S33�−1T↑3 S42 + S32R↑3�I − S33R↑3�−1S43

T↓3�I − S33R↑3�−1S13 T↓3�I − S33R↑3�−1S23 R↓3 + T↓3S33�I − R↑3S33�−1T↑3 T↓3�I − S33R↑3�−1S43

S14 + S34R↑3�I − S33R↑3�−1S13 S24 + S34R↑3�I − S33R↑3�−1S23 S34�I − R↑3S33�−1T↑3 S44 + S34R↑3�I − S33R↑3�−1S43

� ,

�52a�

�
C̃p,1

C̃p,2

C̃p,3

C̃p,4

� = �
Cb

�3��I − S33R↑3�−1S13

Cb
�3��I − S33R↑3�−1S23

Ca
�3� + Cb

�3�S33�I − R↑3S33�−1T↑3

Cb
�3��I − S33R↑3�−1S43

� , �52b�

�C̃�,1 C̃�,2 C̃�,3 C̃�,4

C̃�,1 C̃�,2 C̃�,3 C̃�,4
�

= �C�,1 + C�,3R↑3�I − S33R↑3�−1S13 C�,2C�,3R↑3�I − S33R↑3�−1S23 C�,3�I − R↑3S33�−1T↑3 C�,4 + C�,3R↑3�I − S33R↑3�−1S43

C�,1 + C�,3R↑3�I − S33R↑3�−1S13 C�,2 + C�,3R↑3�I − S33R↑3�−1S23 C�,3�I − R↑3S33�−1T↑3 C�,4 + C�,3R↑3�I − S33R↑3�−1S43
� .

�52c�
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The derived S-matrix recursion formulas of the interconnection of the two-port block and the four-port cross block
hrough the port 4 are listed as follows:

�
S̃11 S̃21 S̃31 S̃41

S̃12 S̃22 S̃32 S̃42

S̃13 S̃23 S̃33 S̃43

S̃14 S̃24 S̃34 S̃44

�
= �

S11 + S41R↓4�I − S44R↓4�−1S14 S21 + S41R↓4�I − S44R↓4�−1S24 S31 + S41R↓4�I − S44R↓4�−1S34 S41�I − R↓4S44�−1T↓4

S12 + S42R↓4�I − S44R↓4�−1S14 S22 + S42R↓4�I − S44R↓4�−1S24 S32 + S42R↓4�I − S44R↓4�−1S34 S42�I − R↓4S44�−1T↓4

S13 + S43R↓4�I − S44R↓4�−1S14 S23 + S43R↓4�I − S44R↓4�−1S24 S33 + S43R↓4�I − S44R↓4�−1S34 S43�I − R↓4S44�−1T↓4

T↑4�I − S44R↓4�−1S14 T↑4�I − S44R↓4�−1S24 T↑4�I − S44R↓4�−1S34 R↑4 + T↑4S44�I − R↓4S44�−1T↓4

�
�53a�

�
C̃p,1

C̃p,2

C̃p,3

C̃p,4

� = �
Ca

�4��I − S44R↓4�−1S14

Ca
�4��I − S44R↓4�−1S24

Ca
�4��I − S44R↓4�−1S34

Cb
�4� + Ca

�4�S44�I − R↓4S44�−1T↓4

� , �53b�

�C̃�,1 C̃�,2 C̃�,3 C̃�,4

C̃�,1 C̃�,2 C̃�,3 C̃�,4
�

= �C�,1 + C�,4R↓4�I − S44R↓4�−1S14 C�,2 + C�,4R↓4�I − S44R↓4�−1S24 C�,3 + C�,4R↓4�I − S44R↓4�−1S34 C�,4�I − R↓4S44�−1T↓4

C�,1 + C�,4R↓4�I − S44R↓4�−1S14 C�,2 + C�,4R↓4�I − S44R↓4�−1S24 C�,3 + C�,4R↓4�I − S44R↓4�−1S34 C�,4�I − R↓4S44�−1T↓4
� .

�53c�
t
t
s
a

6
T
r
i
e
n
b
a
s
t
p
p

s
f
t
o
c
t
a
d

Next, with the use of the prepared S-matrix recursion
ormulas, we can construct the total S matrix of the ex-
ended four-port cross block through consecutive step-by-
tep procedure. At the first step, the S matrix of the com-
ined structure of two-port block and four-port cross block
hrough port 1 is analyzed using Eqs. (50a)–(50c). The
ombined structure can be viewed as a four-port block
ith its own S matrix and internal coupling coefficients

perators. Hence, at the second step, the S-matrix formu-
as of the interconnection of the two-port block and the
our-port cross block through port 2 can be straightfor-
ardly applied to interconnect this combined four-port
lock structure to a two-port block through port 2 with no
odification. By the same way, we can recursively apply

he S-matrix formulas to interconnect the combined four-
ort block and a two-port block to build the extended four-
ort cross block. This analysis procedure is illustrated in
ig. 22.
For validating the developed GSMM formulas, the elec-

ric field distributions at each step of building the ex-
ended four-port cross block by the stated step-by-step in-
erconnection procedure are visualized. In Fig. 23, the
esults of the cross-waveguide structure are shown. In
ig. 23(a), the combined structure is illustrated. In Figs.
3(b)–23(e), the y-polarization electric field distributions
t steps 1, 2, 3, and 4 are presented, respectively. The field
isualization results are quite well-matched with the re-
ults of the previous work done by the finite difference
ime domain (FDTD) method [2]. For comparison, addi-
ional simulation results of the T-branch waveguide
tructure [5] and the 90°-bend waveguide structure [6]
re presented, respectively, in Figs. 24 and 25.

. CONCLUSION
he proposed scheme is composed of two main subtheo-
ies: (i) local Fourier modal analysis method for analyzing
nternal eigenmodes of four-port cross blocks and (ii) gen-
ralized scattering-matrix method for modeling crossed
anophotonic structures by interconnecting four two-port
locks and a four-port block. The established modeling
nd analysis on crossed nanophotonic structures is a ba-
ic element for modeling generalized large scale nanopho-
onic networks. The general linear system theory of nano-
hotonic networks will be reported through our successive
aper based on this paper.
In the aspects of methodology, the proposed local analy-

is scheme is efficient since the local field analysis is per-
ormed with the reasonable and practical assumption of
he field localization in nanophotonic structures. Instead
f computing whole structure of network, local regions oc-
upied by functional photonic blocks are characterized by
he local Fourier modal analysis. Eventually this local
nalysis scheme can provide an efficient method of three-
imensional simulation of large scale nanophotonic net-
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orks and systematic methods for the advanced design,
nalysis, and fabrication of nanophotonic networks.
On the other hand, we have proposed a new theory of

he Fourier modal method that overcomes the present
heoretical limitation of the conventional Fourier modal
ethod. The proposed local Fourier modal analysis and

eneralized scattering-matrix method have extended the
erritory of the conventional Fourier modal method. The
onventional Fourier modal method is a Fourier analysis
heory for modeling method of multilayer structure com-
osed of layers having transverse periodic structures such
s periodic grating structures. At present, many people
hink that the Fourier modal method has been almost
ature and the future issues of the Fourier modal
ethod should be focused on its applications. However,

his paper shows that the local Fourier modal method
ith the generalized scattering-matrix method can have
nique advantages in large scale network modeling over
ther conventional global electromagnetic analysis meth-
ds.
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ig. 25. (Color online) (a) 90°-bend waveguide structure and
-polarization electric field distributions at each step of building
he extended four-port cross block by the step-by-step intercon-
ection procedure: steps (b) 1, (c) 2, (d) 3, and (e) 4.
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