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The pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures is described. It is
shown that the pseudo-Fourier modal analysis has an advantage of improved structure modeling over the con-
ventional rigorous coupled-wave analysis. In the conventional rigorous coupled-wave analysis, grating struc-
tures are modeled by the staircase approximation, which is well known to have inherent significant errors
under TM polarization. However, in the pseudo-Fourier modal analysis, such a limitation of the staircase ap-
proximation can be overcome through the smooth-structure modeling based on two-dimensional Fourier rep-
resentation. The validity of the claim is proved with some comparative numerical results from the proposed
pseudo-Fourier modal analysis and the conventional rigorous coupled-wave analysis. © 2007 Optical Society
of America
OCIS codes: 000.3860, 000.6800, 050.1960, 050.1950, 050.0050, 050.1940.
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. INTRODUCTION
uring the past few decades, Fourier modal methods

FMMs) [1–5] have been intensively researched, and
any challenging difficulties related to the fundamentals

f the FMM have been overcome. At present, the FMM is
ell established and is considered to be one of the most
fficient and accurate tools for electromagnetic analysis in
ptics and photonics. Among recent advances in the
MM, Li’s Fourier factorization rule [3–5], the fast Fou-
ier factorization rule by Popov and Nevière [6,7] for
roper convergence in transverse magnetic (TM) polariza-
ion, perfectly matched layers (PMLs) [8], the scattering
atrix (S-matrix) method (SMM) [9,10], and the valida-

ion examination of the staircase approximation [11] are
articularly notable.
The limitation of the staircase approximation and its

esolution were discussed in the framework of the differ-
ntial theory [11]. In the conventional rigorous coupled-
ave analysis (RCWA), the structures indicated by the
ermittivity and permeability functions are usually
taircase-approximated along the longitudinal direction,
nd then the main field equation takes the form of a
oupled differential equation system with constant coeffi-
ients at each layer. In the differential theory, the main
ifferential equation system with nonconstant coefficients
erived from the Maxwell equations is solved by the nu-
erical integration technique. In [11], it is shown that the

taircase approximation adopted in the RCWA can pro-
uce significant errors in the field distribution, particu-
arly within metallic gratings, and the differential theory
ithout the staircase approximation can reduce the er-

ors.
Recently, some spectral-(frequency-)domain-analysis-

ased studies on the Maxwell equations with nonconstant
1084-7529/08/010040-15/$15.00 © 2
oefficients without the staircase approximation were re-
orted [12–16]. In the FMM-based studies [12,13], by
dopting full-Fourier representation of the structures and
elds without the staircase approximation, the differen-
ial equation system with nonconstant coefficients is
ransformed to an algebraic eigenvalue equation in the
ourier domain (spatial-frequency domain). In [14–16],
elds and structures are represented by Legendre polyno-
ial expansion. In this case, also, longitudinally inhomo-

eneous structures are analyzed without the staircase ap-
roximation.
Henceforth we name the FMM-based full-frequency
ethod the pseudo-Fourier modal analysis (PFMA)
ethod following the naming used in our previous paper

13]. The PFMA is a mathematical generalization of the
CWA. In the PFMA, a complete Fourier analysis is ap-
lied to the coupled nonconstant differential equation sys-
em. For performing this task, in the PFMA, electromag-
etic fields and structures are represented by the pseudo-
ourier series and the Fourier series, respectively. From

he viewpoint of mathematical modeling, the most note-
orthy feature of the PFMA may be the nonuse of the

taircase approximation.
Interestingly, the key idea and mathematics of the

FMA were reported independently by Jiang and Chen
12] and Kim and Lee [13] at almost the same time. In
13], the PFMA on a one-dimensional (1-D) structure is
ormulated and the convergence of the PFMA is analyzed.
owever, in [12], an extension of the method using the

oncept of “virtual photonic crystal” for analyzing two-
imensional (2-D) grating structures is described, which
s actually equivalent to 2-D PFMA for single-layer grat-
ng structures.

In this paper, an extension and refinement of the 2-D
008 Optical Society of America
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FMA addressed in [12] is presented. The most important
eature in the described PFMA is the combination of the
FMA and the extended S-matrix method (ESMM) [10]

or analyzing deep continuous grating structures. The
FMA is applied for characterizing the S matrix of a
ingle layer of a multilayer. The obtained S matrices of
he constituent layers are manipulated to form the total S
atrix of the whole multilayer structure according to
edheffer’s star product rule of the SMM.
As a result, within the framework, structures—in par-

icular, deep continuous grating structures—are modeled
y smooth and continuous multilayer structures. The
onuse of the staircase approximation in the proposed
FMA scheme may lead to proper field distribution calcu-

ations for deep continuous metallic grating structures
hat cannot be obtained by the conventional RCWA
cheme with the staircase approximation. The validity of
ur claim is proved with some numerical results compar-
ng the proposed PFMA and the conventional RCWA.

The paper is organized as follows. In Section 2, the gen-
ral 2-D scheme of the PFMA is described. In Section 3,
he multilayer structure analysis with the ESMM is pre-
ented. In Section 4, numerical results for comparing the
CWA and the proposed PFMA are presented and dis-
ussed. In Section 5, concluding remarks are given.

. PSEUDO-FOURIER MODAL ANALYSIS
he basic concepts and 1-D implementation of the PFMA
ave been established in [13]. In this section, the 2-D ver-
ion of the previous 1-D PFMA is described. As previously
tated, a similar 2-D formulation has been already re-
orted by Jiang and Chen [12]. However, we give a refined
ormulation concerning the combination of the PFMA and
he ESMM. It will be interesting to compare our formula-
ion and that of [12]. For convenience, the same notations
nd frameworks as used in [13] are used in the descrip-
ion of the theory. Vectors and matrices are underlined
nd double-underlined, respectively. The time-varying
erm is assumed to be exp�−j�t�. A grating structure with
nite width along the z direction is located in the x–y
lane as shown in Fig. 1; this is usually modeled by a
ultilayer structure. The thickness and the period of the

rating are denoted by d and �x, respectively. In region I,
plane wave Einc is incident to the grating structure, and

he corresponding reflection field ER and transmission
eld ET are generated in regions I and II, respectively.
he calculation and visualization of the vector field distri-
ution in the grating region as well as in regions I and II
re the main tasks of the PFMA.
First, the structure modeling in the PFMA and the

CWA are compared. In the RCWA, the grating structure
hown in Fig. 2(a) is modeled with the staircase approxi-
ation as shown in Fig. 2(b), while in the PFMA, it is
odeled with the continuous and smooth multilayer
odel as shown in Fig. 2(c). Therefore, in the RCWA, the

ermittivity and permeability profiles, ��n��x� and ��n��x�,
f the nth layer are expressed, respectively, by 1-D Fou-
ier series as

��n��x� = �
g

�̃g
�n� exp�jGx,gx�, �1a�
��n��x� = �
g

�̃g
�n� exp�jGx,gx�, �1b�

here Gx,g is the x-direction reciprocal vector component
efined by Gx,g= �2� /�x�g. In the PFMA, as shown in Fig.
(c), the grating structure is modeled by a smoothly con-
ected multilayer structure. The nth layer is described by
he Fourier representation of the permittivity and the
ermeability profiles as

�̂�n��x,z� = �
g,h

�̃gh
�n� exp�j�Gx,gx + Gz,hz��, �2a�

�̂�n��x,z� = �
g,h

�̃gh
�n� exp�j�Gx,gx + Gz,hz��, �2b�

here Gz,h is the z-direction reciprocal vector component
efined by Gz,h= �2� /�d�h and �d is the thickness of a
ingle layer. �̂�n��x ,z� and �̂�n��x ,z� are the periodic exten-
ion [13] (i.e., longitudinal supercell) of the permittivity
rofile ��n��x ,z� and the permeability profile ��n��x ,z� de-
ned, respectively, by

�̂�n��x,z� = ��n��x,z� � �
q=−�

�

��z − q�d�, �2c�

�̂�n��x,z� = ��n��x,z� � �
q=−�

�

��z − q�d�. �2d�

n addition, let the reciprocal permittivity and permeabil-
ty profiles 	̂�n��x ,z� and 
̂�n��x ,z� be defined as, for use in
he latter part of the paper,

	̂�n��x,z� =
1

�̂�n��x,z�
= � 	̃gh

�n� exp�j�Gx,gx + Gz,hz��, �2e�

Fig. 1. Multilayer modeling of the grating to be analyzed.
g,h
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̂�n��x,z� =
1

�̂�n��x,z�
= �

g,h

̃gh

�n� exp�j�Gx,gx + Gz,hz��. �2f�

he analysis of the multilayer structures is conducted
ith the ESMM. In the ESMM described in Section 3, to
btain the total analysis of a multilayer structure, com-
lete electromagnetic characterization of each single
ayer composing the multilayer must be done first. Since
he details of the ESMM will be described in the next sec-
ion, in this section the PFMA on a single layer, the nth
ayer of the multilayer structure placed in free space
hown in Fig. 1, is elucidated.

Let the nth layer be put in free space as shown in Fig.
, where region I and region II indicate left-hand half-
nfinite free space and right-hand half-infinite free space,
espectively. An incident plane wave Einc impinges on the
ingle layer, and then the reflection field ER and the
ransmission field ET are generated in regions I and II,
espectively. In the 2-D PFMA, electromagnetic fields are
epresented by 2-D pseudo-Fourier series. In regions I
nd II, the electric field distributions are expressed, re-
pectively, by the superposition of the incident wave Einc
nd the reflection field ER, and the transmission field ET,

Fig. 2. (a) Target grating structure, (b) structure m

Fig. 3. Analysis of a single layer.
EI = Einc + ER = Einc + �
h=−H

H

�rx,hx + ry,hy + rz,hz�

� exp�j�kx,hx + kyy − kI,z,hz��, �3a�

EII = ET = �
h=−H

H

�tx,hx̂ + ty,hŷ + tz,hẑ�

� exp�j�kx,hx + kyy + kII,z,h�z − �d���, �3b�

here the incidence plane wave Einc is given by

Einc = E0�ux,sx + uy,sy + uz,sz�exp�j�kx,sx + kyy + kI,z,sz��.

�3c�

ere, kx,s and kI,z,s are the x- and z-direction wavevector
omponents of the sth order diffraction channel in region
, which are defined, respectively, by

kx,s = kx,0 + Gx,s, for − H � s � H, �4a�

kI,z,s = ��k0nI�2 − �kx,s�2 − �ky�2, �4b�

nd kII,z,h is the z-direction wavevector component of the
th order diffraction channel in region II, which is defined
y

kII,z,s = ��k0nII�2 − �kx,h�2 − �ky�2, �4c�

here kx,0 and ky are the wavevector components of the
th diffraction channel given, respectively, by

kx,0 = k0nI sin 
 cos �, �4d�

ky = k0nI sin 
 sin �, �4e�

here 
, �, and � indicate the incidence angle, the azi-
uthal angle, and the polarization angle of the 0th dif-

raction channel, and k0, nI, and nII are the free-space
avenumbers given by 2� /� and the refractive indices of

egions I and II, respectively.
In the grating region, the electromagnetic fields are

epresented by the superposition of Bloch eigenmodes of
he grating structure. From Bloch’s theorem, the Bloch
igenmodes of the electric and magnetic fields Ek and Hk
nside the grating structure are, respectively, given by

in the RCWA, (c) structure modeling in the PFMA.
odeling
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Ek = exp�j�kx,0x + kyy + kz,0z��Êk�x,y,z�, �5a�

Hk = exp�j�kx,0x + kyy + kz,0z��Ĥk�x,y,z�, �5b�

here kz,0 is the eigenvalue characterizing the eigenmode
air Ek and Hk, k denotes the wavevector given by k
�kx,0 ,ky ,kz,0�, and Êk�x ,y ,z� and Ĥk�x ,y ,z� are the peri-
dic envelope functions of electric and magnetic fields, re-
pectively. Furthermore, the Bloch eigenmodes Ekand Hk
re represented by the pseudo-Fourier representations:

Ek = Exx + Eyy + Ezz

= exp�j�kx,0x + kyy + kz,0z��Ek

= exp�j�kx,0x + kyy + kz,0z�� �
h=−H

H

�
q=−Q

Q

�Ex,h,qx

+ Ey,h,qy + Ez,h,qz�exp�j�Gx,hx + Gz,qz��, �6a�

Hk = Hxx + Hyy + Hzz

= exp�j�kx,0x + kyy + kz,0z��Hk�x,y,z�

= exp�j�kx,0x + kyy + kz,0z��j� �0

�0
�

h=−H

H

�
q=−Q

Q

�Hx,h,qx

+ Hy,h,qy + Hz,h,qz�exp�j�Gx,hx + Gz,qz��. �6b�

he Maxwell equations with the permittivity profile
�x ,z� and permeability profile ��x ,z� are given by

� � E = ��yEz − �zEy�x + ��zEx − �xEz�y + ��xEy − �yEx�z

= j��0��x,z��Hxx + Hyy + Hzz�, �7a�

� � H = ��yHz − �zHy�x + ��zHx − �xHz�y + ��xHy − �yHx�z

= − j��0��x,z��Exx + Eyy + Ezz�. �7b�

y substituting Eqs. (2a), (2b), (6a), and (6b) into Eqs.
7a) and (7b), we can obtain the following coupled linear
lgebra equations of Fourier coefficients,

jkz,qEy,h,q = k0�
g

�
p

�̃h−g,q−pHx,g,p + jkyEz,h,q, �8a�

jkz,qEx,h,q = − k0�
g

�
p

�̃h−g,q−pHy,h,p + jkx,hEz,h,q, �8b�

�
g

�
p

�̃h−g,q−pEz,g,p = −
jkx,h

k0
Hy,h,q +

jky

k0
Hx,h,q, �8c�

jkz,q

k0
Hy,h,q = �

g
�

p
�̃h−g,q−pEx,g,p +

jky

k0
Hz,h,q, �8d�

jkz,q

k0
Hx,h,q = − �

g
�

p
�̃h−g,q−pEy,g,p +

jkx,h

k0
Hz,h,q, �8e�
�
g

�
p

�̃h−g,q−pHz,g,p =
− jkx,h

k0
Ey,h,q +

jky

k0
Ex,h,q, �8f�

here kz,q is defined by

kz,q = kz,0 + Gz,q. �8g�

e can arrange Eqs. (8a)–(8f) into an algebraic matrix ei-
envalue equation. Let �=, �

=
, 	=, and 


=
be the Toeplitz ma-

rices of the permittivity, permeability, reciprocal permit-
ivity, and reciprocal permeability functions, respectively.
he Toeplitz matrix of the permittivity �= is given by

�= = �
�=0 �=−1 ¯ �=−2H

�=1 �=0 �=−2H+1

] ]

�=2H �=2H−1 ¯ �=0

� , �9a�

here �=k is given by

�=k = �
�̃k,0 �̃k,−1 ¯ �̃k,−2Q

�̃k,1 �̃k,0 �̃k,−2Q+1

] ]

�̃k,2Q �̃k,2Q−1 ¯ �̃k,0

� . �9b�

he Toeplitz matrices of permeability �
=

, reciprocal per-
ittivity 	=, and reciprocal permeability 


=
are defined

imilarly to that of permittivity. In addition, K=x, K=y, and
z are defined by, respectively,

K=x =�
kx,−H

k0
I=�2Q+1� 0 ¯ 0

0
kx,−H+1

k0
I=�2Q+1� 0 0

] ] � 0

0 0 ¯

kx,H

k0
I=�2Q+1�

� ,

�10a�

K=y = 	ky

k0

I=�2Q+1��2H+1�, �10b�

K=z =�
�kz,q

k0
� 0 ¯ 0

0 �kz,q

k0
� 0 0

] ] �kz,q

k0
� 0

0 0 ¯ �kz,q

k0
�� ,

�10c�

here I=N is the N�N identity matrix and �kz,q /k0� is de-
ned by
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�kz,q

k0
� =�

kz,−Q

k0

0 ¯ 0

0
kz,−�Q−1�

k0

0 0

] ] � 0

0 0 ¯

kz,Q

k0

� . �10d�

rom Eq. (8g), we can see that

K=z =
kz,0

k0
I=�2Q+1��2H+1� + G=z, �10e�

here G=x is defined by

G=z =�
�Gz,q

k0
� 0 ¯ 0

0 �Gz,q

k0
� 0 0

] ] �Gz,q

k0
� 0

0 0 ¯ �Gz,q

k0
�� ,

�10f�

here �G /k � is defined by
z,q 0
�Gz,q

k0
� =�

Gz,−Q

k0

0 ¯ 0

0
Gz,−�Q−1�

k0

0 0

] ] � 0

0 0 ¯

Gz,Q

k0

� .

�10g�

et the vector notation Ex be defined by

Ex = ��Ex,−H,−Q ¯ Ex,−H,Q�

��Ex,−H+1,−Q ¯ Ex,−H+1,Q� ¯ �Ex,H,−Q ¯ Ex,H,Q��t.

�11�

y, Ez, Hx, Hy, and Hz are equivalently defined. With use
f the above notation, the algebraic equation system of
qs. (8a)–(8f) is reformulated to


�= 0 0 0 0 0

0 �= 0 0 0 0

0 0 �= 0 0 0

0 0 0 �
=

0 0

0 0 0 0 �
=

0

0 0 0 0 0 �
=

�

Ex

Ey

Ez

Hx

Hy

Hz

� = 

0 0 0 0 jK=z − jK=y

0 0 0 − jK=z 0 jK=x

0 0 0 jK=y − jK=x 0

0 jK=z − jK=y 0 0 0

− jK=z 0 jK=x 0 0 0

jK=y − jK=x 0 0 0 0
�


Ex

Ey

Ez

Hx

Hy

Hz

� . �12a�

e can simply extend the above isotropic equation to the more general anisotropic version as



�=�x� 0 0 0 0 0

0 �=�y� 0 0 0 0

0 0 �=�z� 0 0 0

0 0 0 �
=�x� 0 0

0 0 0 0 �
=�y� 0

0 0 0 0 0 �
=�z�

�

Ex

Ey

Ez

Hx

Hy

Hz

� = 

0 0 0 0 jK=z − jK=y

0 0 0 − jK=z 0 jK=x

0 0 0 jK=y − jK=x 0

0 jK=z − jK=y 0 0 0

− jK=z 0 jK=x 0 0 0

jK=y − jK=x 0 0 0 0
�


Ex

Ey

Ez

Hx

Hy

Hz

� .

�12b�
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ince the transverse wavevector components kx,h and ky
re predetermined, Eq. (12b) is rearranged as an eigen-
alue matrix equation with respect to the z-direction
avevector component, kz,0, which is called the propaga-

ion constant. By eliminating Ez and Hz using the rela-

ions a

E
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W
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Ez = �=�z�
−1�− jK=xHy + jK=yHx�, �13a�

Hz = �
=�z�

−1�− jK=xEy + jK=yEx�, �13b�
nd Eq. (10e), Eq. (12b) is manipulated into the form


0 0 K=y�=�z�

−1K=x �
=�x� − K=y�=�z�

−1K=y

0 0 − �
=�y� + K=x�=�z�

−1K=x − K=x�=�z�
−1K=y

K=y�
=�z�

−1K=x �=�x� − K=y�
=�z�

−1K=y 0 0

− �=�y� + K=x�
=�z�

−1K=x − K=x�
=�z�

−1K=y 0 0
�


Ey

Ex

Hy

Hx

�
= j

kz,0

k0 

Ey

Ex

Hy

Hx

� + 

jG=z 0 0 0

0 jG=z 0 0

0 0 jG=z 0

0 0 0 jG=z

�

Ey

Ex

Hy

Hx

� . �14a�

hen we can obtain a matrix eigenvalue equation with respect to kz,0 as



− jG=z 0 K=y��z�

−1K=x �
=�x� − K=y�=�z�

−1K=y

0 − jG=z − �
=�y� + K=x�=�z�

−1K=x − K=x�=�z�
−1K=y

K=y�
=�z�

−1K=x �=�x� − K=y�
=�z�

−1K=y − jG=z 0

− �=�y� + K=x�
=�z�

−1K=x − K=x�
=�z�

−1K=y 0 − jG=z

�

Ey

Ex

Hy

Hx

� =
jkz,0

k0 

Ey

Ex

Hy

Hx

� . �14b�
t is noted that in a practical implementation of Eq. (14b),
he Fourier factorization rule [3–7] for the x- and
-direction polarization should be properly considered for
chieving good convergence. However, in this paper, for
onvenience, a simple empirical method for 2-D gratings
roposed by Lalanne [2] is employed for practical simula-
ions. Following Lalanne’s approach, we set �=�x�, �=�y�, �=�z�,
�x�, �
=�y�, and �

=�z� as

�=�x� = tx�= + �1 − tx�	=−1, �15a�

�=�y� = ty�= + �1 − ty�	=−1, �15b�

�=�z� = tz�= + �1 − tz�	=−1, �15c�

�
=�x� = sx�

=
+ �1 − sx�


=

−1, �15d�

�
=�y� = sy�

=
+ �1 − sy�


=

−1, �15e�

�
=�z� = sz�= + �1 − sz�
=−1. �15f�

y default, the permeability components are taken as
onstant. In the analysis of one-dimensionally periodic
along the x-direction) binary gratings placed on the x–y
lane, according to the Fourier factorization rule, �=�x�, �=�y�,
nd �=�z�—with tx, tz, and ty being set to 0, 1, and 1,
espectively—are given by �=�x�=	=−1, �=�y�=�=, and �=�z�=�=, re-
pectively. For the 1-D periodic metallic triangle grating
ith 45-deg base angle analyzed in Section 4, tx, tz, and ty
re set to 0.5, 0.5, and 1, respectively.
It is noted that a degeneracy problem [12,13] exists in
q. (14b). Since the dimensions of the system matrix are
�2H+1��2Q+1��4�2H+1��2Q+1�, the total number of
btained eigensolutions is 4�2H+1��2Q+1�. As discussed
n [13], the eigenvalues kz,0 must be extracted in the first
rillouin zone using the eigenvalue selection rule

− Gz/2 � Re�kz,0� � Gz/2. �16�

e can choose 4�2H+1� eigenmodes in the first Brillouin
one among the obtained 4�2H+1��2Q+1� eigenmodes.
rom the mathematical point of view, the asymmetrically

runcated pseudo-Fourier series of electromagnetic fields
an also be solutions of the eigenvalue equation (14b). The
igenvalues in the other Brillouin zones are physically de-
enerate with corresponding eigenvalues in the first Bril-
ouin zone. However, since the asymmetrically truncated
seudo-Fourier series shows poor convergence, the sym-
etrically truncated pseudo-Fourier series, that is, the

olution in the first Brillouin zone, is taken as the default
xpression of the Bloch eigenmodes. The system matrix
ize of 4�2H+1��2Q+1��4�2H+1��2Q+1� renders full-
requency formalism such as PFMA impracticable by in-
reasing computing cost dramatically. This difficult de-
eneracy problem, inherent in the described full-
requency PFMA, remains to be overcome. Nevertheless,
he study of full-frequency schemes such as PFMA is
eaningful in that it can provide in-depth understanding

f the Fourier analysis of the linear Maxwell equations.
After obtaining the eigenvalues and eigenvectors of the
ain eigenvalue equation, we must classify the obtained
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igenmodes into two categories, positive (forward) modes
nd negative (backward) modes, with respect to eigenval-
es possessing one of the forms jkz,0

�g� =a�g�+ jb�g�, jkz,0
�g�

a�g�− jb�g�, jkz,0
�g� =−a�g�+ jb�g�, or jkz,0

�g� =−a�g�− jb�g�, where
�g��0 and b�g��0. The eigenmodes with eigenvalues of
kz,0

�g� =a�g�+ jb�g� or jkz,0
�g� =a�g�− jb�g� are referred to as nega-

ive modes, and the notation kz,0
�g�− with the minus super-

cript is used to indicate the negative modes. The eigen-
odes with eigenvalues of jkz,0

�g� =−a�g�+ jb�g� and jkz,0
�g� =

a�g�− jb�g� are referred to as positive modes, and the no-
ation kz,0

�g�+with the plus superscript is used to indicate
he positive mode. In particular, the eigenmodes that
ave pure real eigenvalues of jkz,0

�g� = jb�g� and jkz,0
�g� =−jb�g�

ith a�g�=0 are classified as the positive modes. With
hese terms, the gth positive eigenmode �E�g�

+ ,H�g�
+ � and

he gth negative eigenmode �E�g�
− ,H�g�

− � are represented,
espectively, by

E�g�
+ �x,y,z� = �

h=−H

H

�
q=−Q

Q

�Ex,h,q
�g�+ x + Ey,h,q

�g�+ ŷ + Ez,h,q
�g�+ ẑ�

� exp�j�kx,hx + kyy + kz,q
�g�+z��, �17a�

E�g�
− �x,y,z� = �

h=−H

H

�
q=−Q

Q

�Ex,h,q
�g�− x + Ey,h,q

�g�− ŷ + Ez,h,q
�g�− ẑ�

� exp�j�kx,hx + kyy + kz,q
�g�−�z − �d���,

�17b�
H�g�
+ �x,y,z� = j� �0

�0
�

h=−H

H

�
q=−Q

Q

�Hx,h,q
�g�+ x + Hy,h,q

�g�+ ŷ + Hz,h,q
�g�+ ẑ�

� exp�j�kx,hx + kyy + kz,q
�g�+z��, �17c�

H�g�
− �x,y,z� = j� �0

�0
�

h=−H

H

�
q=−Q

Q

�Hx,h,q
�g�− x + Hy,h,q

�g�− ŷ + Hz,h,q
�g�− ẑ�

� exp�j�kx,hx + kyy + kz,q
�g�−�z − �d���. �17d�

ere, for convenience, the mode index is denoted by g in-
tead of k. Also, it is noted that the exponential term of
he negative mode �E�g�

− ,H�g�
− � is given by exp�j�kx,hx+kyy

kz,q
�g�−�z−�d���, which is the point modified from Eqs. (6a)

nd (6b). The number of positive modes and that of nega-
ive modes are denoted by M+ and M−, respectively. The
um of M+ and M− is M++M−=4�2H+1�.

The total electromagnetic fields in the grating region
an be represented by the superposition of the obtained
igenmodes as follows:

E�x,y,z� = �
g=1

M+

Cg
+E�g�

+ �x,y,z� + �
g=1

M−

Cg
−E�g�

− �x,y,z�, �18a�

H�x,y,z� = �
g=1

M+

Cg
+H�g�

+ �x,y,z� + �
g=1

M−

Cg
−H�g�

− �x,y,z�,

�18b�

here Cg
+ and Cg

− are the coupling coefficients of the posi-
ive mode and the negative mode, respectively. As mani-
ested in [13], the boundary conditions at both boundaries
=0 and z=�d are given, respectively, by


I 0 I 0

0 I 0 I

kx,hky

k0kI,z,h

�kI,z,h
2 + kx,h

2 �

k0kI,z,h
−

kx,hky

k0kI,z,h
−

�kI,z,h
2 + kx,h

2 �

k0kI,z,h

−
�ky

2 + kI,z,h
2 �

k0kI,z,h
−

kykx,h

k0kI,z,h

�ky
2 + kI,z,h

2 �

k0kI,z,h

kykx,h

k0kI,z,h

�
uy�hs

ux�hs

Ry,h

Rx,h

�

=�
�

q=−Q

Q

Ey,h,q
�1�+

¯ �
q=−Q

Q

Ey,h,q
�M+�+ �

q=−Q

Q

Ey,h,q
�1�− e−j�qGz+kz

�1�−��d
¯ �

q=−Q

Q

Ey,h,q
�M−�−e−j�qGz+kz

�M−�−��d

�
q=−Q

Q

Ex,h,q
�1�+

¯ �
q=−Q

Q

Ex,h,q
�M+�+ �

q=−Q

Q

Ex,h,q
�1�− e−j�qGz+kz

�1�−��d
¯ �

p=−Q

Q

Ex,h,q
�M−�−e−j�qGz+kz

�M−�−��d

j �
q=−Q

Q

Hy,h,q
�1�+

¯ j �
q=−Q

Q

Hy,h,q
�M+�+ j �

q=−Q

Q

Hy,h,q
�1�− e−j�qGz+kz

�1�−��d
¯ j �

p=−Q

Q

Hy,h,q
�M−�−e−j�qGz+kz

�M−�−��d

j �
p=−Q

Q

Hx,h,q
�1�+

¯ j �
q=−Q

Q

Hx,h,q
�M+�+ j �

q=−Q

Q

Hx,h,q
�1�− e−j�qGz+kz

�1�−��d
¯ j �

p=−Q

Q

Hx,h,q
�M−�−e−j�qGz+kz

�M−�−��d

�

C1

+

]

CM+
+

C1
−

]

CM−
−

� , �19a�
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I 0

0 I

kx,hky

k0kII,z,h

�kII,z,h
2 + kx,h

2 �

k0kII,z,h

−
�ky

2 + kII,z,h
2 �

k0kII,z,h
−

kykx,h

k0kII,z,h

��Ty,h

Tx,h
�

=�
�

q=−Q

Q

Ey,h,q
�1�+ ej�qGz+kz

�1�+��d
¯ �

q=−Q

Q

Ey,h,q
�M+�+ej�qGz+kz

�M+�+��d �
q=−Q

Q

Ey,h,q
�1�−

¯ �
q=−Q

Q

Ey,h,q
�M−�−

�
q=−Q

Q

Ex,h,q
�1�+ ej�qGz+kz

�1�+��d
¯ �

q=−Q

Q

Ex,h,q
�M+�+ej�qGz+kz

�M+�+��d �
q=−Q

Q

Ex,h,q
�1�−

¯ �
p=−Q

Q

Ex,h,q
�M−�−

j �
q=−Q

Q

Hy,h,q
�1�+ ej�qGz+kz

�1�+��d
¯ j �

q=−Q

Q

Hy,h,q
�M+�+ej�qGz+kz

�M+�+��d j �
q=−Q

Q

Hy,h,q
�1�−

¯ j �
p=−Q

Q

Hy,h,q
�M−�−

j �
p=−Q

Q

Hx,h,q
�1�+ ej�qGz+kz

�1�+��d
¯ j �

q=−Q

Q

Hx,h,q
�M+�+ej�qGz+kz

�M+�+��d j �
q=−Q

Q

Hx,h,q
�1�−

¯ j �
p=−Q

Q

Hx,h,q
�M−�−

�

C1

+

]

CM+
+

C1
−

]

CM−
−

� . �19b�
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y solving Eqs. (19a) and (19b), we can obtain the reflec-
ion and transmission coefficients �Rx,h ,Ry,h ,Rz,h� and
Tx,h ,Ty,h ,Tz,h�, and the coupling coefficients
C1

+, . . . ,CM+
+ ,C1

−, . . . ,CM−
− �.

The extension of the PFMA to 3-D theory can be
traightforwardly achieved since the process of math-
matical extension to the 3-D PFMA is precisely the same
s that for the 2-D PFMA. In next section, the described
FMA on a single layer is extended to multilayer struc-
ure analysis with use of the ESMM.

. MULTILAYER STRUCTURE ANALYSIS
ITH THE EXTENDED SCATTERING
ATRIX METHOD

asically, in the full-dimension (2-D) Fourier representa-
ion scheme used in the PFMA, the longitudinal-direction
z-direction) Fourier spectral components in a wide
nough spectral bandwidth must be retained for accu-
ately modeling the discontinuous profiles involved in the
arget structures. When the z-direction Fourier spectral
andwidth to be retained is fixed, we can see that as the
-direction period �d becomes longer, the required num-
er of z-direction Fourier spectral components must in-
rease to cover the required full-Fourier spectral band-
idth. Hence, in a practical computation, the z-direction
eriod �d is inevitably limited in a certain specific range
hat is dependent on the structural parameters of the tar-
et structure to be analyzed, since the number of
-directional Fourier spectral components that are man-
geable with practical computers is restricted. Therefore,
o practically analyze longer or deeper structures, we
hould take the multilayer modeling scheme with the
MM [9,10].
In this section, the general analysis scheme based on

he PFMA and the ESMM for multilayer structures is de-
cribed. First, each single layer in a multilayer structure
s characterized by the PFMA, and the characterization
esults of each single layer are combined by the ESMM to
nd the total characteristics of the multilayer. In [10], the
SMM is applied to the RCWA. However, without signifi-
ant modifications, we can also straightforwardly apply
he ESMM to the PFMA to analyze multilayer structures.
ee [10] for complete details about the ESMM.
Let us consider the multilayer modeling of the grating

tructure shown in Fig. 1. The nth layer is bidirectional
haracterized with the PFMA as indicated in Figs. 4(a)
nd 4(b). For the left-to-right characterization indicated
n Fig. 4(a), the boundary-condition matching equations
19a) and (19b) are expressed as the following matrix op-
rator equations,

	Wh Wh

Vh − Vh

	U��n,n�

R��n,n�
 = 	W+
�n� W−

�n�X−
�n�

V+
�n� V−

�n�X−
�n�
	Ca

�n,n�+

Ca
�n,n�−
 ,

�20a�

ig. 4. Bidirectional characterization of the nth layer: (a) left-
o-right characterization, (b) right-to-left characterization.
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	W+
�n�X+

�n� W−
�n�

V+
�n�X+

�n� V−
�n�
	Ca

�n,n�+

Ca
�n,n�−
 = 	Wh Wh

Vh − Vh

	T��n,n�

0

 ,

�20b�

here Wh and Vh are �2�2H+1��� �2�2H+1�� matrices
nd are given, respectively, by

Wh = 	I 0

0 I
 , �20c�

Vh = � � kx,hky

k0kI,z,h
� � �kI,z,h

2 + kx,h
2 �

k0kI,z,h
�

�−
�ky

2 + kI,z,h
2 �

k0kI,z,h
� �−

kykx,h

k0kI,z,h
� � , �20d�

here I and 0 are the �2H+1�� �2H+1� identity matrix
nd the zero matrix, respectively, and �ah� means a �2H
1�� �2H+1� diagonal matrix given by the

�
a−H ¯ 0

] � ]

0 ¯ aH
� . �20e�

+
�n� and V+

�n� are �2�2H+1���M+ matrices indicating the
art of the positive modes in Eq. (19a). W�n� and V�n� are
− −

l
s
T�

L
o
a

2�2H+1���M− matrices indicating the part of the nega-
ive modes in Eq. (19b). U��n,n� is the input operator—
ctually, a �2�2H+1��� �2�2H+1�� identity matrix. R��n,n�

nd T��n,n� are referred to as the reflection coefficient ma-
rix operator and the transmission coefficient matrix op-
rator, respectively. X+

�n� and X−
�n� are the M+�M+ diago-

al matrix of the exponential term of the positive mode,
xp�−j�qGz+kz

�g�+�d�, and the M−�M− diagonal matrix of
he exponential term of the negative mode, exp�−j�qGz

kz
�g�−�d�, respectively.
The coupling coefficient matrix operators Ca

�n,n�+, Ca
�n,n�−

nd the reflection and transmission operators R��n,n� and
�n,n� of the left-to-right characterization are obtained, re-

pectively, from Eqs. (20a) and (20b), as

ig. 5. Bidirectional characterization of a multilayer composed
f two neighboring layers: (a) left-to-right characterization, (b)
ight-to-left characterization.
	Ca
�n,n�+

Ca
�n,n�−
 = 	 Wh

−1W+
�n� + Vh

−1V+
�n� �Wh

−1W−
�n� + Vh

−1V−
�n��X−

�n�

�Wh
−1W+

�n� − Vh
−1V+

�n��X+
�n� Wh

−1W−
�n� − Vh

−1V−
�n� 
−1	2U��n,n�

0

 , �21a�
R��n,n� = Wh
−1�W+

�n�Ca
�n,n�+ + W−

�n�X−
�n�Ca

�n,n�− − WhU��n,n��,

�21b�

T��n,n� = Wh
−1�W+

�n�X+
�n�Ca

�n,n�+ + W−
�n�Ca

�n,n�−�. �21c�

he �4�2H+1��� �2�2H+1�� coupling coefficient matrix
perator Ca

�n,n� is defined by

Ca
�n,n� = �Ca

�n,n�+ Ca
�n,n�−�t. �21d�

n the same way, the coupling coefficient matrix operators

b
�n,n�= �Cb

�n,n�+ Cb
�n,n�− �t and the reflection and transmis-

ion operators R��n,n� and T��n,n� of the right-to-left charac-
erization can be obtained.

Conventionally, the S matrix of the single layer, S�n,n�,
s defined by

S�n,n� = 	T��n,n� R��n,n�

R��n,n� T��n,n�
 . �22�

he directional characteristics of any multilayer can be
btained by properly combining the obtained matrix op-
rators of single layers through Redheffer’s star product
elation.

Figure 5 shows the bidirectional characterization of a
ultilayer composed of two neighboring layers, the nth
ayer and the �n+1�th layer. The reflection and transmis-
ion matrix operators, R��n,n+1�, T��n,n+1�, R��n,n+1�, and
�n,n+1� are obtained by Redheffer’s star product relation:

R��n,n+1� = R��n,n� + T��n,n���I − R��n+1,n+1�R��n,n��−1�

�R��n+1,n+1�T��n,n�, �23a�

T��n,n+1� = T��n+1,n+1���I − R��n,n�R��n+1,n+1��−1�T��n,n�,

�23b�

R��n,n+1� = R��n+1,n+1� + T��n+1,n+1���I − R��n,n�R��n+1,n+1��−1�

�R��n,n�T��n+1,n+1�, �23c�

T��n,n+1� = T��n,n���I − R��n+1,n+1�R��n,n��−1�T��n+1,n+1�.

�23d�

et us denote the internal coupling coefficient operators
f the combined multilayer Ca

�n,n+1� and Cb
�n,n+1�. Ca

�n,n+1�

nd Cb
�n,n+1� are �4�2H+1��� �8�2H+1�� matrices given by

Ca
�n,n+1� = �Ca,1

�n,n+1� Ca,2
�n,n+1��, �24a�
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Cb
�n,n+1� = �Cb,1

�n,n+1� Cb,2
�n,n+1��, �24b�

here �Ca,1
�n,n+1� ,Cb,1

�n,n+1�� and �Ca,2
�n,n+1� ,Cb,2

�n,n+1�� are the re-
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pective coupling coefficient matrix operators correspond-
ng to the nth layer and the �n+1�th layer. Then the for-

ulas of the internal coupling coefficients are given as
	Ca,1
�n,n+1�

Cb,1
�n,n+1�
 = 	Ca

�n,n� + Cb
�n,n��I − R��n+1,n+1�R��n,n��−1R��n+1,n+1�T��n,n�

Cb
�n,n��I − R��n+1,n+1�R��n,n��−1T��n+1,n+1� 
 , �25a�

	Ca,2
�n,n+1�

Cb,2
�n,n+1�
 = 	 Ca

�n+1,n+1��I − R��n,n�R��n+1,n+1��−1T��n,n�

Cb
�n+1,n+1� + Ca

�n+1,n+1��I − R��n,n�R��n+1,n+1��−1R��n,n�T��n+1,n+1�
 . �25b�
he relationship can be referred to as the extended Red-
effer’s star product and denoted by the form

�Ca
�n,n+1� Cb

�n,n+1��

= �Ca
�n,n� Cb

�n,n�� * �Ca
�n+1,n+1� Cb

�n+1,n+1��. �26�

. NUMERICAL RESULTS AND
ISCUSSION

n this section, some numerical results obtained by the
roposed PFMA scheme will be presented. With compari-
on of the results obtained by the proposed PFMA and the
onventional RCWA, the limitation of the conventional
CWA using the staircase approximation will be mani-

ested, and the validity and correctness of the proposed
cheme will be proved. Since it is well known that errors
nduced by the staircase approximation are significant for

etallic structures, subwavelength metallic triangle grat-
ng structures are selected as example target structures
o be analyzed. It can be expected that the continuous
odeling of target structures without the staircase ap-

roximation produces more accurate results than the con-
entional method.

Figure 6 shows a subwavelength metallic triangle grat-
ng structure with base length of 211 nm, height of
5.2 nm, and period, Tx, of 316.6 nm. The permittivity val-
es of the surrounding medium and the gating material
re set to 1 and −10.1592+ j0.8294, respectively. In the
CWA, a multilayer with 30 layers is adopted in approxi-
ating the triangle structure. On the other hand, in the
FMA, just one triangle layer is used. In other words, in
he PFMA, the whole triangle structure is represented by

Fig. 6. Subwavelength metallic triangle grating structure.
2-D Fourier series without the multilayer modeling. The
nalytic Fourier transform of a trapezoid is given in Ap-
endix A. In the analysis, a plane wave of wavelength
51.8 nm is normally incident on the grating structure, as
hown in Fig. 6. In Fig. 7, the electric field distributions
btained by the RCWA and the PFMA are compared. In
he simulation, the x-direction Fourier truncation order H
s set to 14, and in the PFMA, the z-direction Fourier
runcation order Q is set to 8. In Figs. 7(a) and 7(b), the
-direction electric field distributions, �Ey�, i.e., TE field
istributions obtained by the PFMA and the RCWA re-
pectively, are shown. We cannot see any significant dif-
erences between the two figures.

However, in the case of the x-direction electric field,
Ex�, and the z-direction electric field, �Ez�, significant dif-
erences appear, as seen in Figs. 7(c) and 7(d) and Figs.
(e) and 7(f), respectively. It is observed that around the
etal grating surface, the z-direction electric field, �Ez�,

xists as shown in Figs. 7(e) and 7(g). However, in the
ase of the RCWA, nonphysical high electric field peaks
re observed on the grating surface as indicated in Figs.
(f) and 7(h). This kind of nonphysical high peak was also
eported and discussed in Ref. [12].

Let us observe these inherent structural errors intro-
uced by the staircase approximation in detail. In Fig. 8,
nother metallic triangle grating structure is shown with
ase length of 211 nm, height of 176 nm, and period, Tx, of
16 nm. The permittivity value of the grating material is
10.1592+ j0.8294. To allow observation of the effect of
he staircase approximation, the RCWA on this grating
tructure is repeated with several staircase levels. The
btained z-direction electric field distributions are pre-
ented in Fig. 9. We can observe some digitized errors and
igh-intensity peak patterns in the z-direction electric
eld distributions, �Ez�, of each staircase level and that
he error pattern seems to converge at a level number
igher than 64. Therefore, we can see that the observed
igh peaks shown in Fig. 7(h) originate from the staircase
pproximation of the smooth triangle profile.
Next, the numerical results of the PFMA on the grating

tructure shown in Fig. 8 are compared with those of the
CWA. In the PFMA, the grating structure is modeled by
multilayer with 30 layers, as shown in Fig. 4(a). Two

ases of normal incidence and 45-deg oblique incidence
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re considered for proving the advantages of the PFMA
ver the RCWA. In Fig. 10, the electric field distributions
btained in the case of oblique incidence are presented. In
igs. 10(a) and 10(b), the y-direction electric field distri-
utions, �Ey�, obtained by the PFMA and the RCWA, re-
pectively, are shown. As in the case of the previous ex-
mple, no significant differences appear in the two
gures. However, in the case of the TM field—that is, the
-direction electric field, �Ex�, and the z-direction electric
eld, �E �—comparing the results of the PFMA shown in

on results: (a) �Ey� obtained by the PFMA, (b) �Ey� obtained by the
e) �Ez� obtained by the PFMA, (f) �Ez� obtained by the RCWA, (g)
Fig. 8. Subwavelength metallic triangle grating structure.
ig. 7. (Color online) Comparison of the PFMA and the RCWA simulati
CWA, (c) �Ex� obtained by the PFMA, (d) �Ex� obtained by the RCWA, (
z
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igs. 10(c) and 10(e) and those of the RCWA shown in
igs. 10(d) and 10(f), we can perceive significant differ-
nces in the field distribution. Nonphysical discontinuous
eld distributions that might not naturally exist around
he smooth metal grating surface are observed in Figs.
0(d) and 10(f). These unnatural field distributions ob-
erved in the RCWA results originate from the improper
taircase approximation of the smooth metallic structure.
n Fig. 11, a comparison of the PFMA and the RCWA in
he case of normal incidence is presented. Just as in the
ase of oblique incidence, in the case of normal incidence
he limitation of the RCWA with the staircase approxima-
ion can be observed, while the PFMA shows natural field
istributions.
In fact, the field distributions presented here cannot be

aid to be convergent enough. Convergence is difficult to

ig. 9. (Color online) z-direction electric field distribution, �Ez�, o
b) 8 levels, (c) 16 levels, (d) 32 levels, (e) 64 levels, and (f) 128 le
ttain in practice in the PFMA because of the degeneracy
roblem. With use of a personal computer, the number of
runcation orders retained in computation is seriously
imited. Although the increase in truncation orders may
e possible with use of parallel computers, this study is
onsidered as research independent of the parallel imple-
entation of the FMM. Definitely, as the truncation order

ncreases, the PFMA will converge at a certain level, al-
hough the task requires large-scale parallel computa-
ion. In this paper, we discussed the full-frequency for-
alism, PFMA, and the effect of the staircase

pproximation within the FMM framework by comparing
he PFMA and the RCWA. We can perceive and under-
tand the difference between the RCWA and the PFMA,
lthough the field distributions may not be completely
onverged.

d by the RCWA with the staircase approximation of (a) 4 levels,
btaine
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. CONCLUSION
n this paper, the general scheme of the PFMA with the
SMM for modeling 2-D arbitrarily shaped grating struc-

ures has been described. Arbitrarily shaped metallic
rating structures are modeled by multilayer structures
ithout the staircase approximation, based on 2-D Fou-

ier representation of the structures. It has been shown
hat this method can eliminate the inherent errors of the
taircase approximation in the analysis of metallic grat-
ng structures. The PFMA can be widely applied in optics
nd photonics. It is expected that the described scheme
ill be particularly useful for the modeling and simula-

ion of phenomena, devices, and systems in the field of

ig. 10. (Color online) Oblique incidence: (a) �Ey� obtained by th
d) �Ex� obtained by the RCWA, (e) �Ez� obtained by the PFMA, (f
lasmonics on a subwavelength scale that studies mainly
etallic structures.

PPENDIX A
igure 12 shows a trapezoid Fourier transform of a trap-
zoid. Let the trapezoid function ��x ,y� be defined by

��x,y� = �1 for �x,y� � trapezoid

0 for �x,y� � trapezoid
. �A1�

he 2-D Fourier transform of this trapezoid function,
�f , f �, is obtained by

A, (b) �Ey� obtained by the RCWA, (c) �Ex� obtained by the PFMA,
btained by the RCWA.
e PFM
) �E � o
x y



F

Fig. 12. Trapezoid.

F
( x z z

H. Kim and B. Lee Vol. 25, No. 1 /January 2008 /J. Opt. Soc. Am. A 53
for fx�0 and fy�0,

�fx,fy� = 	− j�y2 − y1�

2�fx



��− e−2�fxbej2�	 fxb

c
−fy
	 y1+y2

2

sinc�	 fxb

c
− fy
�y2 − y1��

+ e−2�fxae−j2�	 fxa

c
+fy
	 y1+y2

2

sinc�	 fxa

c
+ fy
�y2 − y1���;

�A2�

A, (b) �Ey� obtained by the RCWA, (c) �Ex� obtained by the PFMA,
btained by the RCWA.
for fx=0 and fy�0,
F�fx,fy� = 	a + b

c 
e−i2�fyc��j2��c − y2�fy − 1�ej2�fy�c−y2� − �j2��c − y1�fy − 1�ej2�fy�c−y1�

�2�fy�2 �; �A3�
ig. 11. (Color online) Normal incidence: (a) �Ey� obtained by the PFM
d) �E � obtained by the RCWA, (e) �E � obtained by the PFMA, (f) �E � o
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for fx=0 and fy=0,

1

1

1

1

1

1

1

Ffx,fy
= ��a + b��y2 − y1��2c − y1 − y2�

2c � . �A4�
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