40 J. Opt. Soc. Am. A/Vol. 25, No. 1/January 2008

H. Kim and B. Lee

Pseudo-Fourier modal analysis of two-dimensional
arbitrarily shaped grating structures

Hwi Kim and Byoungho Lee*

National Creative Research Center for Active Plasmonics Applications Systems, Inter-University Semiconductor
Research Center and School of Electrical Engineering, Seoul National University, Gwanak-Gu Sinlim-Dong,
Seoul 151-744, Korea
*Corresponding author: byoungho@snu.ac.kr

Received July 17, 2007; revised October 4, 2007; accepted October 8, 2007;
posted October 15, 2007 (Doc. ID 85322); published December 5, 2007

The pseudo-Fourier modal analysis of two-dimensional arbitrarily shaped grating structures is described. It is
shown that the pseudo-Fourier modal analysis has an advantage of improved structure modeling over the con-
ventional rigorous coupled-wave analysis. In the conventional rigorous coupled-wave analysis, grating struc-
tures are modeled by the staircase approximation, which is well known to have inherent significant errors
under TM polarization. However, in the pseudo-Fourier modal analysis, such a limitation of the staircase ap-
proximation can be overcome through the smooth-structure modeling based on two-dimensional Fourier rep-
resentation. The validity of the claim is proved with some comparative numerical results from the proposed
pseudo-Fourier modal analysis and the conventional rigorous coupled-wave analysis. © 2007 Optical Society

of America
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1. INTRODUCTION

During the past few decades, Fourier modal methods
(FMMs) [1-5] have been intensively researched, and
many challenging difficulties related to the fundamentals
of the FMM have been overcome. At present, the FMM is
well established and is considered to be one of the most
efficient and accurate tools for electromagnetic analysis in
optics and photonics. Among recent advances in the
FMM, Li’s Fourier factorization rule [3-5], the fast Fou-
rier factorization rule by Popov and Neviére [6,7] for
proper convergence in transverse magnetic (TM) polariza-
tion, perfectly matched layers (PMLs) [8], the scattering
matrix (S-matrix) method (SMM) [9,10], and the valida-
tion examination of the staircase approximation [11] are
particularly notable.

The limitation of the staircase approximation and its
resolution were discussed in the framework of the differ-
ential theory [11]. In the conventional rigorous coupled-
wave analysis (RCWA), the structures indicated by the
permittivity and permeability functions are usually
staircase-approximated along the longitudinal direction,
and then the main field equation takes the form of a
coupled differential equation system with constant coeffi-
cients at each layer. In the differential theory, the main
differential equation system with nonconstant coefficients
derived from the Maxwell equations is solved by the nu-
merical integration technique. In [11], it is shown that the
staircase approximation adopted in the RCWA can pro-
duce significant errors in the field distribution, particu-
larly within metallic gratings, and the differential theory
without the staircase approximation can reduce the er-
rors.

Recently, some spectral-(frequency-)domain-analysis-
based studies on the Maxwell equations with nonconstant
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coefficients without the staircase approximation were re-
ported [12-16]. In the FMM-based studies [12,13], by
adopting full-Fourier representation of the structures and
fields without the staircase approximation, the differen-
tial equation system with nonconstant coefficients is
transformed to an algebraic eigenvalue equation in the
Fourier domain (spatial-frequency domain). In [14-16],
fields and structures are represented by Legendre polyno-
mial expansion. In this case, also, longitudinally inhomo-
geneous structures are analyzed without the staircase ap-
proximation.

Henceforth we name the FMM-based full-frequency
method the pseudo-Fourier modal analysis (PFMA)
method following the naming used in our previous paper
[13]. The PFMA is a mathematical generalization of the
RCWA. In the PFMA, a complete Fourier analysis is ap-
plied to the coupled nonconstant differential equation sys-
tem. For performing this task, in the PFMA, electromag-
netic fields and structures are represented by the pseudo-
Fourier series and the Fourier series, respectively. From
the viewpoint of mathematical modeling, the most note-
worthy feature of the PFMA may be the nonuse of the
staircase approximation.

Interestingly, the key idea and mathematics of the
PFMA were reported independently by Jiang and Chen
[12] and Kim and Lee [13] at almost the same time. In
[13], the PFMA on a one-dimensional (1-D) structure is
formulated and the convergence of the PFMA is analyzed.
However, in [12], an extension of the method using the
concept of “virtual photonic crystal” for analyzing two-
dimensional (2-D) grating structures is described, which
is actually equivalent to 2-D PFMA for single-layer grat-
ing structures.

In this paper, an extension and refinement of the 2-D
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PFMA addressed in [12] is presented. The most important
feature in the described PFMA is the combination of the
PFMA and the extended S-matrix method (ESMM) [10]
for analyzing deep continuous grating structures. The
PFMA is applied for characterizing the S matrix of a
single layer of a multilayer. The obtained S matrices of
the constituent layers are manipulated to form the total S
matrix of the whole multilayer structure according to
Redheffer’s star product rule of the SMM.

As a result, within the framework, structures—in par-
ticular, deep continuous grating structures—are modeled
by smooth and continuous multilayer structures. The
nonuse of the staircase approximation in the proposed
PFMA scheme may lead to proper field distribution calcu-
lations for deep continuous metallic grating structures
that cannot be obtained by the conventional RCWA
scheme with the staircase approximation. The validity of
our claim is proved with some numerical results compar-
ing the proposed PFMA and the conventional RCWA.

The paper is organized as follows. In Section 2, the gen-
eral 2-D scheme of the PFMA is described. In Section 3,
the multilayer structure analysis with the ESMM is pre-
sented. In Section 4, numerical results for comparing the
RCWA and the proposed PFMA are presented and dis-
cussed. In Section 5, concluding remarks are given.

2. PSEUDO-FOURIER MODAL ANALYSIS

The basic concepts and 1-D implementation of the PFMA
have been established in [13]. In this section, the 2-D ver-
sion of the previous 1-D PFMA is described. As previously
stated, a similar 2-D formulation has been already re-
ported by Jiang and Chen [12]. However, we give a refined
formulation concerning the combination of the PFMA and
the ESMM. It will be interesting to compare our formula-
tion and that of [12]. For convenience, the same notations
and frameworks as used in [13] are used in the descrip-
tion of the theory. Vectors and matrices are underlined
and double-underlined, respectively. The time-varying
term is assumed to be exp(—jwt). A grating structure with
finite width along the z direction is located in the x—y
plane as shown in Fig. 1; this is usually modeled by a
multilayer structure. The thickness and the period of the
grating are denoted by d and A,, respectively. In region I,
a plane wave E,,. is incident to the grating structure, and
the corresponding reflection field Ez and transmission
field Er are generated in regions I and II, respectively.
The calculation and visualization of the vector field distri-
bution in the grating region as well as in regions I and II
are the main tasks of the PFMA.

First, the structure modeling in the PFMA and the
RCWA are compared. In the RCWA, the grating structure
shown in Fig. 2(a) is modeled with the staircase approxi-
mation as shown in Fig. 2(b), while in the PFMA, it is
modeled with the continuous and smooth multilayer
model as shown in Fig. 2(c). Therefore, in the RCWA, the
permittivity and permeability profiles, ™ (x) and u™(x),
of the nth layer are expressed, respectively, by 1-D Fou-
rier series as

eM(x) = >, 8 exp(jG, o), (1a)
g
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Fig. 1. Multilayer modeling of the grating to be analyzed.

p"(x) = ) B exp(iGgx), (1b)
g

where G, ; is the x-direction reciprocal vector component
defined by G, ;=(27/A,)g. In the PFMA, as shown in Fig.
2(c), the grating structure is modeled by a smoothly con-
nected multilayer structure. The nth layer is described by
the Fourier representation of the permittivity and the
permeability profiles as

£M(x,2) = D) 5 explj(G, x + G, 42)], (2a)
g,h

£(x,2) = D) B explj(Gy g + G, 2)], (2b)
g,h

where G, , is the z-direction reciprocal vector component
defined by G, ,=(27/Ad)h and Ad is the thickness of a
single layer. £§™(x,z) and 4"(x,z) are the periodic exten-
sion [13] (i.e., longitudinal supercell) of the permittivity
profile £€™(x,z) and the permeability profile u(x,z) de-
fined, respectively, by

©

M (x,2) =M (x,2) ® D, 8z -qAd), (2¢)
q:_oc

AW (x,2) = uM(x,2) © D 8z - gAd). (2d)
q:_ac

In addition, let the reciprocal permittivity and permeabil-
ity profiles & (x,z) and B"(x,z) be defined as, for use in
the latter part of the paper,

1
a"(x,z) = = a%y explj(Gpx + G, 2)], (2e)
g,h

M (x,2)
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Fig. 2. (a) Target grating structure, (b) structure modeling in the RCWA, (c¢) structure modeling in the PFMA.

. 1 -
B (x,2) = =2 Bl explj(Gy o + G p2)]. (2D
a"(x,z) g

The analysis of the multilayer structures is conducted
with the ESMM. In the ESMM described in Section 3, to
obtain the total analysis of a multilayer structure, com-
plete electromagnetic characterization of each single
layer composing the multilayer must be done first. Since
the details of the ESMM will be described in the next sec-
tion, in this section the PFMA on a single layer, the nth
layer of the multilayer structure placed in free space
shown in Fig. 1, is elucidated.

Let the nth layer be put in free space as shown in Fig.
3, where region I and region II indicate left-hand half-
infinite free space and right-hand half-infinite free space,
respectively. An incident plane wave E;,. impinges on the
single layer, and then the reflection field Er and the
transmission field Ep are generated in regions I and II,
respectively. In the 2-D PFMA, electromagnetic fields are
represented by 2-D pseudo-Fourier series. In regions I
and II, the electric field distributions are expressed, re-
spectively, by the superposition of the incident wave E;,.
and the reflection field Er, and the transmission field Ep,

X
Region I Region 11
(z < 0) (Ad < z)
E,
E,
AX
E

Ad

Fig. 3. Analysis of a single layer.

H
EI=Einc+ER=Einc+ E (rx,hx+ry,hy+rz,h2)
- - — = =g - - -

X exp[](kx,hx + kyy - kI,z,hZ)]’ (33-)
H
Ep=Ep= E (e pX + 1y 10 +1t,42)
— T h=H
X expljkepx + Ry +kip, 5z = Ad))],  (3b)
where the incidence plane wave E;,, is given by
Einc = EO(ux,sx + Uy sy + uz,sz)exp[j(kx,sx + kyy + kl,z,sz)]‘
(3¢)

Here, k, ¢ and k;, ; are the x- and z-direction wavevector
components of the sth order diffraction channel in region
I, which are defined, respectively, by

kis=kyo+G,s, for —-H=s=H, (4a)

ks = \(kony)® - (kys) = ()7, (4b)

and kj; ., is the z-direction wavevector component of the
hth order diffraction channel in region II, which is defined
by

kipas=\(koni)?® — (kyp)? - (k)% (4c)

where ko and &, are the wavevector components of the
Oth diffraction channel given, respectively, by

kyo="Fkonysin 6 cos ¢, (4d)

ky=kon;sin 6sin ¢, (4e)

where 6, ¢, and ¢ indicate the incidence angle, the azi-
muthal angle, and the polarization angle of the Oth dif-
fraction channel, and kg, n;, and nj; are the free-space
wavenumbers given by 27/\ and the refractive indices of
regions I and II, respectively.

In the grating region, the electromagnetic fields are
represented by the superposition of Bloch eigenmodes of
the grating structure. From Bloch’s theorem, the Bloch
eigenmodes of the electric and magnetic fields E;, and H),
inside the grating structure are, respectively, given by
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Ej = expljkyox + by + k. 02)[Eyx,y,2),  (52)

Hy, = expljlk, o + kyy + k. 2) [H,(x,y,2),  (5b)

where k, ( is the eigenvalue characterizing the eigenmode
pair E;, and H;, k denotes the wavevector given by k
=(ky0,ky,k, ), and _k(x,y z) and Iik(x,y z) are the peri-
odic envelope functions of electric and magnetic fields, re-
spectively. Furthermore, the Bloch eigenmodes Ezand Hj,
are represented by the pseudo-Fourier representations:

E,=Ex+Ey+Ez2

= exp(f(ky ox + kyy + k.,02))E),
H Q

= exp(j(kx,Ox + kyy + kz,OZ)) E 2 (Ex,h,qx
h=-H q=-Q -

+ Ey,h,qy + Ez,h,qf)exp(j(Gx,hx + Gz,qz)) 5 (63)

szHxx+Hy+Hz

= exp(jlk, ox + kyy + kz,OZ))Hk(x’y,Z)

= eXp(I(kx,Ox + kyy + kz,Oz))J E E (Hx h q
MO h=—H ¢q=-Q
+ Hy,h,qy + Hz,h,qf)exp(j(Gx,hx + Gz,qz))- (Gb)

The Maxwell equations with the permittivity profile
e(x,z) and permeability profile u(x,z) are given by

VX €= (ﬁyEz - azEy)j_C + (‘?zEx - &sz)y + (axEy - é’yEgc)'i

=jw;,L0,u,(x,z)(Hx3_c +H W+ H z) (7a)

VX H=(3,H, - 0.H,)x + (0.H, - 3H.)y + (0.H, - ),H)z

=—jwepe(x, z)(Exx +E W +E z) (7b)
By substituting Egs. (2a), (2b), (6a), and (6b) into Eqgs.

(7a) and (7b), we can obtain the following coupled linear
algebra equations of Fourier coefficients,

.]kz qy,hg — kOE E ﬁh—g,q—pHx,g,p +jkyEz,h,q7 (83)
g p

jkz,qu,h,q == kOE E ﬁh—g,q—pHy,h,P +jkxahEz’h"I’ (8b)
g p
_ .]kx,h .]ky
2 2 Sh—g.q—pEzg,p == 2 Hy.h,q + k_Hx,h,q’ (8¢)
g p 0 0
Jk2q _ Jky
q= > Eh-gg-pBrgp+ T Hopg,  (8d)
ko s p ko
jkz q

. _ jkx,h
2 H pq=- 2 E Eh-gq-plygp 2 H, g, (8e)
0 g p 0
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ko Ey,h,q + k_OEx,h,q, (Sf)

2 E Bn-gq-pHzgp=

where k, , is defined by

kz,q = kz,O + Gz,q' (8g)

We can arrange Eqgs. (8a)—(8f) into an algebraic matrix ei-
genvalue equation. Let g, u, @, and B be the Toeplitz ma-
trices of the permittivity, permeability, reciprocal permit-
tivity, and reciprocal permeability functions, respectively.

The Toeplitz matrix of the permittivity ¢ is given by

]

0 €1 T € 2H

&1 €0

1
1}
—
©
)
=

EoH E9H-1 T €o

where g, is given by

€0 €p1 o Ep_9g
Ep1 €10 €h,-20+1

Er= . . . (gb)
€,99  Ep2g-1 €40

The Toeplitz matrices of permeability u, reciprocal per-
mittivity @, and reciprocal permeability B are defined
similarly to that of permittivity. In addition, K,, K,, and
K, are defined by, respectively,

ke n
k 2(2Q+1)
kx -H+1
0 T Ioowy O 0
I={x= ko 2(2Q+1) i
0
ka
0 0 —I 50,
k 2(2Q+1)
(10a)
ky
K, = P Liog+1)2H41)5 (10b)
0
k.
il 0 0
ko
k.
0 a 0 0
ko
=z~ kzg O ’
ko
k,
ko
(10c)
where Iy is the N X N identity matrix and [k, ,/k] is de-

fined by
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k.- G,
@ 0 0 Q 0 0
ko ko
k.- G._(o-
k. 0 @ G., 0 ~@ 0
A = ko . (10d) % = ko
0 : : 0 0 : 0
k. G,
0 0 @ 0 0 @
ko ko
From Eq. (8g), we can see that (10g)
kz,O
K.= 2. Leqiuemi + G., (10e)
0 Let the vector notation E, be defined by
where G, is defined by
G,,
kO 0 0 Ex = [[Ex,—H,—Q T Ex,—H,Q]
G., X[E. g Er maql [Ein o E.moll.
0 ‘ 0 0
. ko (11)
=2z Gz’q 0 ’
ko
G E,E, H,, H, and H, are equivalently defined. With use
0 0 { Z’q} of the above notation, the algebraic equation system of
ko Eqgs. (8a)—(8f) is reformulated to
(101)
where [G, ,/k] is defined by
e 0 0 0 0 OfZE 0 0 0 0 JK. -JK, || Ex
0 g O 0 0 0 Ey 0 0 0 -JK, 0 JE, Ey
0 0 &€ 0 0 O é; 0 0 0 JK, -JK, 0 §§ 1
0 0 0 wu O O}||lH, | o JK, -JjK, 0 0 0 H, (12a)
0 0 0 0 g OfH -JK, 0 JK, 0 0 0 H,
60 0 0 0 0 ul|lH, JK, -JK, 0 0 0 0 H,
We can simply extend the above isotropic equation to the more general anisotropic version as
gw O 0 0 0 0 || Ex 0 0 0 0 JK.  -JK, || Bx
0 £(y) 0 0 0 0 E} 0 0 0 -JK, 0 JK, E&
0 0 £0) 0 0 0 || E. 0 0 0 JK, -JK, 0 E,
0 0 0 Bix) 0 o (|H. || o JK. -JK, 0 0 0 H. |
0 0 0 0 M) 0 || H, -JK, 0 JK, 0 0 0 H,
0 0 0 0 0 ko || H. JK,  -JK, 0 0 0 0 ||H,

(12b)
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Since the transverse wavevector components &, ; and &,
are predetermined, Eq. (12b) is rearranged as an eigen-
value matrix equation with respect to the z-direction
wavevector component, k, o, which is called the propaga-
tion constant. By eliminating E, and H, using the rela-
tions
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E. =) (-jK.H, +/K,H,), (13a)

H, = p(-JK.E, +JK,E,), (13b)

and Eq. (10e), Eq. (12b) is manipulated into the form

-1 -1
0 0 I={y§(z)l={x )~ I={y§(z)l=<y Ey
0 0 ~ Fi) + I={x§(_zl)l=(x - I={x§(_zl)1={y Ex
-1 -1
I=(y/i(z)l=(x g~ I={y:‘="(z)l={y 0 0 I_{y
- g0 + KpiK, ~KpK, 0 0 H,
Ey JG. 0 0 0 Ey
kol Ex 0 JjG, 0 0 ||lE,
=7 - - . 14
Tk lH,|T 0 0 ja o | H, (142)
H, 0 0 0 G, || H,
Then we can obtain a matrix eigenvalue equation with respect to %, as
-JG, 0 K K, o~ K ek, |[E, E,
0 -JjG. —pprEepK,  -KeK, || Eo| k.ol E.
_ . - A === 5 (14b)
I={y1‘=‘“(zl)l={x Ew) ~ I={y/=’“(zl)l={y -JG. 0 Ey ko I;Iy
—Eyt I={xg(_zl)l={x - I={xg(_zl)l={y -J gz I;Ix I;Ix

It is noted that in a practical implementation of Eq. (14b),
the Fourier factorization rule [3-7] for the x- and
z-direction polarization should be properly considered for
achieving good convergence. However, in this paper, for
convenience, a simple empirical method for 2-D gratings
proposed by Lalanne [2] is employed for practical simula-
tions. Following Lalanne’s approach, we set g, (), £¢)
By By and g as

g =t +(1-t)a™", (15a)
gy =tye+(1-t)a™", (15b)
go=tg+(1-t)a™, (15¢)
By =S+ (1=5)B7", (15d)
ty =syp+ (1=s5,)57, (15€)
o= s+ (1-5)87" (15f)

By default, the permeability components are taken as
constant. In the analysis of one-dimensionally periodic
(along the x-direction) binary gratings placed on the x—y
plane, according to the Fourier factorization rule, g), g,
and g, —with ¢,, ¢,, and ¢, being set to 0, 1, and 1,
respectively—are given by g(x)=g‘1, £y)=¢&, and g;)=g, re-
spectively. For the 1-D periodic metallic triangle grating
with 45-deg base angle analyzed in Section 4, t,, t,, and ¢,
are set to 0.5, 0.5, and 1, respectively.

It is noted that a degeneracy problem [12,13] exists in
Eq. (14b). Since the dimensions of the system matrix are
42H+1)(2Q+1) X4(2H+1)(2Q +1), the total number of
obtained eigensolutions is 4(2H+1)(2Q +1). As discussed
in [13], the eigenvalues &,  must be extracted in the first
Brillouin zone using the eigenvalue selection rule

- G./2 = Re(k, ) < G,/2. (16)

We can choose 4(2H +1) eigenmodes in the first Brillouin
zone among the obtained 4(2H+1)(2Q+1) eigenmodes.
From the mathematical point of view, the asymmetrically
truncated pseudo-Fourier series of electromagnetic fields
can also be solutions of the eigenvalue equation (14b). The
eigenvalues in the other Brillouin zones are physically de-
generate with corresponding eigenvalues in the first Bril-
louin zone. However, since the asymmetrically truncated
pseudo-Fourier series shows poor convergence, the sym-
metrically truncated pseudo-Fourier series, that is, the
solution in the first Brillouin zone, is taken as the default
expression of the Bloch eigenmodes. The system matrix
size of 4(2H+1)(2Q+1)X4(2H+1)(2Q+1) renders full-
frequency formalism such as PFMA impracticable by in-
creasing computing cost dramatically. This difficult de-
generacy problem, inherent in the described full-
frequency PFMA, remains to be overcome. Nevertheless,
the study of full-frequency schemes such as PFMA is
meaningful in that it can provide in-depth understanding
of the Fourier analysis of the linear Maxwell equations.
After obtaining the eigenvalues and eigenvectors of the
main eigenvalue equation, we must classify the obtained
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eigenmodes into two categories, positive (forward) modes
and negative (backward) modes, with respect to eigenval-
ues possessing one of the forms ]k(g =a® +jb®, Jk(g)
=a®—jb®, ]k(g)_—a(g +jb©, or Jk(g)——a(g)—Jb(g where
a®¥>0 and b(g5>0 The elgenmodes with eigenvalues of
]k(g =a® +jb® or Jk(g) =a¥—jb® are referred to as nega-
tive modes, and the notation k(gO with the minus super-
script is used to indicate the negative modes. The elgen-
modes with eigenvalues of j&)=-a+jb® and jk¥)=
—a®—jb® are referred to as positive modes, and the no-
tation kf();“with the plus superscript is used to indicate
the positive mode. In particular, the eigenmodes that
have pure real eigenvalues of _]k(g) =jb® and _]k(g)— —jb®
with a®=0 are classified as the positive modes. With
these terms, the gth positive eigenmode (E(g),H+ ) and
the gth negative eigenmode (I_E'_(g),l;l_(g)) are represented,
respectively, by

(g>(xy2)— E 2 (Eg(cg})L+q

h=-H q=-Q

+E&" 5+ E9) %)
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Hip(x,y,2) =] E 2 (HE x+ S5 + HE'2)
- MO h=-H q=—Q

X expljk, px + kyy + kf;'z)], (17¢)
H, (x,y,2) =] 2 E (H f}[qx+H gy +H @)' 2
- MO h=-H q=—Q

X exp{jlk, px + kyy + k ) (- Ad)]} (17d)

Here, for convenience, the mode index is denoted by g in-
stead of k. Also, it is noted that the exponential term of
the negative mode (E, Eg., (g)) is given by exp{j[k, ,x+k,y
+k(g; (z—Ad)]}, which is the point modified from Eqs. (6a)
and (6b). The number of positive modes and that of nega-
tive modes are denoted by M* and M, respectively. The
sum of M* and M~ is M*+M =4(2H+1).

The total electromagnetic fields in the grating region
can be represented by the superposition of the obtained
eigenmodes as follows:

M* M-
E(x,y,2) = El CiE(x,y,2) + 21 CLE(x,y,2), (18a)
g= &=

q=-Q

X explj(ky px + kyy + kig(;*z)], (17a)
; o jye
H(x,y,2) = X, CiHyy(x,5,2) + 2, CoH (x,,2),
g=1 g=1
(18b)
E\(x.y,2) = E E (Exhqx+E y+E 2) B . ' ]
h=—H q=-Q where C; and Cg are the coupling coefficients of the posi-
. @y _ tive mode and the negative mode, respectively. As mani-
X expllhx +kyy + kiq @ ad)l}, fested in [13], the boundary conditions at both boundaries
(17b) z=0 and z=Ad are given, respectively, by
1 0 I 0
0 I 0 I Uy Ops
kx,hky (klz,z,h + kz,h) kx,hky (k%,z,h + kgzc,h) uxahs
koki: p kokr p koki kokrp Ry
(k5 + k7. ) khe,  RE+EL) hykon |l B
kokrzn kokrzn kokrzn kokr.n
e . (- ¢ or)
1 M* - - M- —j ).
E E; })1+q E E;’h’(); E E( ) o/(aG+kT)Ad E E;,h,:; oGk )Ad . o -
q=-@Q q=-Q q=-Q 1
Q Q Q o Q o :
SN, o SEN 3 ERenes o3 gt ||
=—Q 9=-Q q=—Q p=-Q M+
=l e Q Q c- | (192)
. M* . - - - : M)- (M)~ 1
2 H3(/1}):q j E H;;,h,;- J E H;,}% e J(qG,+k, " T)Ad J 2 H;“ 7(; e —J(qG +k, )Ad .
7=-Q =-Q == == .
Q Q Q Q o
1)+ . M+ : (1)- ,-j(qG,+kV)Ad ; M), j(gG+ kM 7)Ad M
J E Hxhq .] 2 x,h,q J E Hx,h,qe e J 2 Hx,h,q € = ) )

p=-Q
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1 0
0 I
2 2
kynky (kII,z,h + kx,h) {Ty,h}
kokip kokirzn T
2 22
(k5 +kir 2 0) kyksc
kokirzn kokir
Q Q Q Q
D+ _j(qG,+kM*)Ad M4+ j(qG+kM)ad (1)- M-\ . .
EQ E&,Z:qe](q k) EQ Ey,h,()1+e](q k) EQ Ey,h,q EQ E§,h,q C’{
g=- q=- q=- g=-
Q Q Q Q :
1+ j(qG,+kV)Ad M*)+_j(qG,+ kM *)Ad 1)- M- :
S, e S, et 3 By, DR |
q=- q=- q=- p=- *
=l @ Q Q Q c- |- 190
. 1 . ()+ . Mt . (M*)+ . _ . M- 1
D e D N ) Wl |
7=-Q q=-Q q=-Q p=-Q
Q Q Q Q N
. W)+ _j(qG,+£V)Ad . M)+ jqG kM NAd (1)- : (M- .CM_
J 2 Hx,h,qe] e J 2 Hx,h,q e/ J E Hx,h,q J 2 Hx,h,q -
p=-Q 7=-Q 7=-Q p=-@Q

By solving Egs. (19a) and (19b), we can obtain the reflec-
tion and transmission coefficients (R, ;,R,;,R,;) and
Ty Typ,T,5), and  the  coupling  coefficients
(CY,...,Chp,C1, ... ,Cop).

The extension of the PFMA to 3-D theory can be
straightforwardly achieved since the process of math-
ematical extension to the 3-D PFMA is precisely the same
as that for the 2-D PFMA. In next section, the described
PFMA on a single layer is extended to multilayer struc-
ture analysis with use of the ESMM.

3. MULTILAYER STRUCTURE ANALYSIS
WITH THE EXTENDED SCATTERING
MATRIX METHOD

Basically, in the full-dimension (2-D) Fourier representa-
tion scheme used in the PFMA, the longitudinal-direction
(z-direction) Fourier spectral components in a wide
enough spectral bandwidth must be retained for accu-
rately modeling the discontinuous profiles involved in the
target structures. When the z-direction Fourier spectral
bandwidth to be retained is fixed, we can see that as the
z-direction period Ad becomes longer, the required num-
ber of z-direction Fourier spectral components must in-
crease to cover the required full-Fourier spectral band-
width. Hence, in a practical computation, the z-direction
period Ad is inevitably limited in a certain specific range
that is dependent on the structural parameters of the tar-
get structure to be analyzed, since the number of
z-directional Fourier spectral components that are man-
ageable with practical computers is restricted. Therefore,
to practically analyze longer or deeper structures, we
should take the multilayer modeling scheme with the
SMM [9,10].

In this section, the general analysis scheme based on
the PFMA and the ESMM for multilayer structures is de-

[
scribed. First, each single layer in a multilayer structure
is characterized by the PFMA, and the characterization
results of each single layer are combined by the ESMM to
find the total characteristics of the multilayer. In [10], the
ESMM is applied to the RCWA. However, without signifi-
cant modifications, we can also straightforwardly apply
the ESMM to the PFMA to analyze multilayer structures.
See [10] for complete details about the ESMM.

Let us consider the multilayer modeling of the grating
structure shown in Fig. 1. The nth layer is bidirectional
characterized with the PFMA as indicated in Figs. 4(a)
and 4(b). For the left-to-right characterization indicated
in Fig. 4(a), the boundary-condition matching equations
(19a) and (19b) are expressed as the following matrix op-
erator equations,

Wh Wh ﬁ(n,n) Wsrn) W(_n)x(_n) C((ln,n)Jr
<Vh ‘Vh) R =<Vi’” VS")xﬁn))(c;”’”>‘)’
(20a)
i) 1" layer n'h layer .
U( ) y\A i (n)
=> (] T o) [] <=
Re | [=> || g
< =
i) o
(@ (b)

Fig. 4. Bidirectional characterization of the nth layer: (a) left-
to-right characterization, (b) right-to-left characterization.
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WX W (e W W, (T
VIR VR e )TV, =V e )
(20Db)

where W;, and V, are [2(2H+1)]X[2(2H +1)] matrices
and are given, respectively, by

I 0
Wh = 0 I , (200)
{ ke nky (k?,z,h + kf,h)
kOkIz h kOkI z,h
V, = ” 7 , (20d)
h (kY +k7 1) [ Ryk.. ]
koky . kokiz p

where I and 0 are the (2H+1) X (2H+1) identity matrix
and the zero matrix, respectively, and [a;] means a (2H
+1) X (2H +1) diagonal matrix given by the

a_g 0
: (20e)

0 ag

Wi’” and Vi”) are [2(2H +1)] X M* matrices indicating the
part of the positive modes in Eq. (19a). W™ and V" are

C(n,n)+ Wﬁlwin) + Vzlvgn)
a
(i) = (e

ﬁ(n,n) — w}—ll[win)cgn,nH + w(_n)X(_n)CfIn,n)— _ Whﬁ(n,n)],
(21b)

T = W TWOX el Wwern-]. (21¢)

The [4(2H+1)]X[2(2H+1)] coupling coefficient matrix
operator Cé”’") is defined by

com = (€ (21d)
In the same way, the coupling coefficient matrix operators
C;J” "”:(C})”’”)Jr _(}é"’”)_ )t and the reflection and transmis-
sion operators R and T"" of the right-to-left charac-
terization can be obtained.

Conventionally, the S matrix of the single layer, "),

is defined by
'f(n,n) I_.i(n,n)
Stmm = . (22)

ﬁ(n,n) 'i‘_(n,n)

The directional characteristics of any multilayer can be
obtained by properly combining the obtained matrix op-
erators of single layers through Redheffer’s star product
relation.

Figure 5 shows the bidirectional characterization of a
multilayer composed of two neighboring layers, the nth

H. Kim and B. Lee

U b layer n® layer  g5(nm)

— plmn1) T T =
ﬁ("”'*l) |::> ;:I ﬁ(n,n-ﬂ)
<= =
ey (1) layer (1) layer
CS, 1) Cg 1)

@) (b)

Fig. 5. Bidirectional characterization of a multilayer composed
of two neighboring layers: (a) left-to-right characterization, (b)
right-to-left characterization.

[2(2H +1)] X M~ matrices indicating the part of the nega-
tive modes in Eq. (19b). U™ is the input operator—
actually, a [2(2H+1)] X [2(2H +1)] identity matrix. R
and T™" are referred to as the reflection coefficient ma-
trix operator and the transmission coefficient matrix op-
erator, respectively. Xfr") and X" are the M*x M* diago-
nal matrix of the exponential term of the positive mode,
exp[—j(qu+k;g)+)d], and the M~ X M~ diagonal matrix of
the exponential term of the negative mode, exp[-j(qG,
+kig)")d], respectively.

The coupling coefficient matrix operators C;”’”H, Cfl”’n)_
and the reflection and transmission operators R and
T of the left-to-right characterization are obtained, re-
spectively, from Eqgs. (20a) and (20b), as

(W 'W® 4 V;IVOX ™\ 7 (onm
, (21a)

w,'w v itve 0

[
layer and the (n+1)th layer. The reflection and transmis-

sion matrix operators, R"n+D, T+ R+l and
Tn+1) gre obtained by Redheffer’s star product relation:

ﬁ(n,n+1) — ﬁ(n,n) + 'i‘_(n,n)[(l _ ﬁ(n+1,n+1)1_i(n,n))—1:|

X R+ La+ D) (23a)

ri:(n,n+1) — f(n+1,n+1)[(1 _ ﬁ(n,n)ﬁ(n+1,n+1))—1]f(n,n)
(23b)

I_{)(n,n+1) — ﬁ(n+1,n+1) + rf(n+1,n+1)[(1 _ ﬁ(n,n)(R_(n+1,n+l))—l]

Xﬁ(n,n)rf(n+l,n+l)’ (23¢)

rf(n,n+1) — f(n,n)[(l _ E(n+1,n+1)ﬁ(n,n))—l]ri\_(n+1,n+l)'
(23d)

Let us denote the internal coupling coefficient operators
of the combined multilayer C™"*? and C{™"*V. cl»m+!)
and Cg""”l) are [4(2H+1)]X[8(2H +1)] matrices given by
C(n,n+1) _ (C(nin'*'l)

a - a,

ciyh), (24a)
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cpm= (R CpyY), (24b)

where (Cfl”i””),C(b”’l“l)) and (sz”’z"”),C;,”é””)) are the re-
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spective coupling coefficient matrix operators correspond-
ing to the nth layer and the (n+1)th layer. Then the for-
mulas of the internal coupling coefficients are given as

C(n,ln+1) C(n,n) + Cén,n)(l _ (R_(n+1,n+1)ﬁ(n,n))—I(R_(n+1,n+1)rf(n,n)
a, a
cinr+) - (n,n) R (n+1,n+ )R (n,n)\-1(n+1,n+1) ’ (25a)
by C{)(I - R+ L+ DR ) -1+ 1,
C(nén+1) C(n+1,n+1)(1 _ ﬁ(n,n)ﬁ(n+1,n+1))—1ri‘)(n,n)
a, a
= . 2
Cgléﬂ‘rl) C;)n+1,n+1) i C(n+1,n+1)(I _ I_{)(n,n)ﬁ(n+1,n+1))—1ﬁ(n,n)ri|_(n+l,n+1) (25b)
B a

The relationship can be referred to as the extended Red-
heffer’s star product and denoted by the form

(C((ln,n+1) an,n+1))

_ (C(an,n) Cin,n)) * (C‘(ln+1,n+1) Cén+1,n+1))' (26)

4. NUMERICAL RESULTS AND
DISCUSSION

In this section, some numerical results obtained by the
proposed PFMA scheme will be presented. With compari-
son of the results obtained by the proposed PFMA and the
conventional RCWA, the limitation of the conventional
RCWA using the staircase approximation will be mani-
fested, and the validity and correctness of the proposed
scheme will be proved. Since it is well known that errors
induced by the staircase approximation are significant for
metallic structures, subwavelength metallic triangle grat-
ing structures are selected as example target structures
to be analyzed. It can be expected that the continuous
modeling of target structures without the staircase ap-
proximation produces more accurate results than the con-
ventional method.

Figure 6 shows a subwavelength metallic triangle grat-
ing structure with base length of 211 nm, height of
35.2 nm, and period, 7', of 316.6 nm. The permittivity val-
ues of the surrounding medium and the gating material
are set to 1 and —10.1592+;0.8294, respectively. In the
RCWA, a multilayer with 30 layers is adopted in approxi-
mating the triangle structure. On the other hand, in the
PFMA, just one triangle layer is used. In other words, in
the PFMA, the whole triangle structure is represented by

}' T, =316.6nm
’;z (3)5 it £=-10.1592 + j0.8294

it } A135'2nm
v=rl4
} 211nm

Fig. 6. Subwavelength metallic triangle grating structure.

[
a 2-D Fourier series without the multilayer modeling. The
analytic Fourier transform of a trapezoid is given in Ap-
pendix A. In the analysis, a plane wave of wavelength
351.8 nm is normally incident on the grating structure, as
shown in Fig. 6. In Fig. 7, the electric field distributions
obtained by the RCWA and the PFMA are compared. In
the simulation, the x-direction Fourier truncation order H
is set to 14, and in the PFMA, the z-direction Fourier
truncation order @ is set to 8. In Figs. 7(a) and 7(b), the
y-direction electric field distributions, |E,|, i.e., TE field
distributions obtained by the PFMA and the RCWA re-
spectively, are shown. We cannot see any significant dif-
ferences between the two figures.

However, in the case of the x-direction electric field,
|E,|, and the z-direction electric field, |E,|, significant dif-
ferences appear, as seen in Figs. 7(c) and 7(d) and Figs.
7(e) and 7(f), respectively. It is observed that around the
metal grating surface, the z-direction electric field, |E,|,
exists as shown in Figs. 7(e) and 7(g). However, in the
case of the RCWA, nonphysical high electric field peaks
are observed on the grating surface as indicated in Figs.
7(f) and 7(h). This kind of nonphysical high peak was also
reported and discussed in Ref. [12].

Let us observe these inherent structural errors intro-
duced by the staircase approximation in detail. In Fig. 8,
another metallic triangle grating structure is shown with
base length of 211 nm, height of 176 nm, and period, T, of
316 nm. The permittivity value of the grating material is
-10.1592+;0.8294. To allow observation of the effect of
the staircase approximation, the RCWA on this grating
structure is repeated with several staircase levels. The
obtained z-direction electric field distributions are pre-
sented in Fig. 9. We can observe some digitized errors and
high-intensity peak patterns in the z-direction electric
field distributions, |E,|, of each staircase level and that
the error pattern seems to converge at a level number
higher than 64. Therefore, we can see that the observed
high peaks shown in Fig. 7(h) originate from the staircase
approximation of the smooth triangle profile.

Next, the numerical results of the PFMA on the grating
structure shown in Fig. 8 are compared with those of the
RCWA. In the PFMA, the grating structure is modeled by
a multilayer with 30 layers, as shown in Fig. 4(a). Two
cases of normal incidence and 45-deg oblique incidence
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Fig. 7. (Color online) Comparison of the PFMA and the RCWA simulation results: (a) |E,| obtained by the PFMA, (b) |E,| obtained by the
RCWA, (¢) |E,| obtained by the PFMA, (d) |E,| obtained by the RCWA, (e) |E,| obtained by the PFMA, (f) |E,| obtained by the RCWA, (g)

|E,| obtained by the PFMA, (h) |E,| obtained by the RCWA.

&£=-10.1592+ j0.8294

A =310nm ITX =316.6nm

O=rl4

176nm

$=0
v=rl4

211nm
Fig. 8. Subwavelength metallic triangle grating structure.

are considered for proving the advantages of the PFMA
over the RCWA. In Fig. 10, the electric field distributions
obtained in the case of oblique incidence are presented. In
Figs. 10(a) and 10(b), the y-direction electric field distri-
butions, |E,|, obtained by the PFMA and the RCWA, re-
spectively, are shown. As in the case of the previous ex-
ample, no significant differences appear in the two
figures. However, in the case of the TM field—that is, the
x-direction electric field, |E,|, and the z-direction electric
field, |E,|—comparing the results of the PFMA shown in
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(c)

‘I l(as)

Ml'
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Figs. 10(c) and 10(e) and those of the RCWA shown in
Figs. 10(d) and 10(f), we can perceive significant differ-
ences in the field distribution. Nonphysical discontinuous
field distributions that might not naturally exist around
the smooth metal grating surface are observed in Figs.
10(d) and 10(f). These unnatural field distributions ob-
served in the RCWA results originate from the improper
staircase approximation of the smooth metallic structure.
In Fig. 11, a comparison of the PFMA and the RCWA in
the case of normal incidence is presented. Just as in the
case of oblique incidence, in the case of normal incidence
the limitation of the RCWA with the staircase approxima-
tion can be observed, while the PFMA shows natural field
distributions.

In fact, the field distributions presented here cannot be
said to be convergent enough. Convergence is difficult to
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Fig. 9. (Color online) z-direction electric field distribution, |E,|, obtained by the RCWA with the staircase approximation of (a) 4 levels,
(b) 8 levels, (c) 16 levels, (d) 32 levels, (e) 64 levels, and (f) 128 levels.

attain in practice in the PFMA because of the degeneracy
problem. With use of a personal computer, the number of
truncation orders retained in computation is seriously
limited. Although the increase in truncation orders may
be possible with use of parallel computers, this study is
considered as research independent of the parallel imple-
mentation of the FMM. Definitely, as the truncation order
increases, the PFMA will converge at a certain level, al-
though the task requires large-scale parallel computa-
tion. In this paper, we discussed the full-frequency for-
malism, PFMA, and the effect of the staircase
approximation within the FMM framework by comparing
the PFMA and the RCWA. We can perceive and under-
stand the difference between the RCWA and the PFMA,
although the field distributions may not be completely
converged.
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Fig. 10. (Color online) Oblique incidence: (a) |E,| obtained by the PFMA, (b) |E,| obtained by the RCWA, (c) |E,| obtained by the PFMA,
(d) |E,| obtained by the RCWA, (e) |E,| obtained by the PFMA, () |E,| obtained by the RCWA.

5. CONCLUSION

In this paper, the general scheme of the PFMA with the
ESMM for modeling 2-D arbitrarily shaped grating struc-
tures has been described. Arbitrarily shaped metallic
grating structures are modeled by multilayer structures
without the staircase approximation, based on 2-D Fou-
rier representation of the structures. It has been shown
that this method can eliminate the inherent errors of the
staircase approximation in the analysis of metallic grat-
ing structures. The PFMA can be widely applied in optics
and photonics. It is expected that the described scheme
will be particularly useful for the modeling and simula-
tion of phenomena, devices, and systems in the field of

plasmonics on a subwavelength scale that studies mainly
metallic structures.

APPENDIX A

Figure 12 shows a trapezoid Fourier transform of a trap-
ezoid. Let the trapezoid function I'(x,y) be defined by

1 for (x,y) e trapezoid

[(x,y) = (A1)

0 for (x,y) ¢ trapezoid’

The 2-D Fourier transform of this trapezoid function,
F(f,,f,), is obtained by
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1.5

Fig. 11. (Color online) Normal incidence: (a) |E,| obtained by the PFMA, (b) |E,| obtained by the RCWA, (¢) |E,| obtained by the PFMA,
(d) |E,| obtained by the RCWA, (e) |E,| obtained by the PFMA, (f) |E,| obtained by the RCWA.

3 for £,#0 and f,#0,
c N F(fuf;) = (_j(;;;yl))
y . : _ e—Zﬂfxbef%(’%‘fy)(;”;i)sinc{ (fc—b - fy> 2 —yl)]
—a b x : + e—wxae—jzw(f’;—aw)(yl%)sinc{ (f’;—a + fy) (2 —yl)} |
(A2)

Fig. 12. Trapezoid.
for £,=0 and £, #0,

- )e—izﬂfyc{ [12(c - yo)fy - 122~ [j2m(c — y f, - 15D }? (A3)

F(fxafy)=( c (27#;/)2
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for f,=0 and f,=0,

(@+b)ys-y1)(2c—y1-y2)
Foly = 2c

(A4)

ACKNOWLEDGMENTS

The authors acknowledge the support by the Ministry of
Science and Technology of Korea and the Korea Science
and Engineering Foundation through the Creative Re-
search Initiative Program (Active Plasmonics Applica-
tions Systems).

REFERENCES

1.

M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave
analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71,
811-818 (1981).

P. Lalanne, “Improved formulation of the coupled-wave
method for two-dimensional gratings,” J. Opt. Soc. Am. A
14, 1592-1598 (1997).

L. Li, “Use of Fourier series in the analysis of
discontinuous periodic structures,” J. Opt. Soc. Am. A 13,
1870-1876 (1996).

L. Li, “Fourier modal method for crossed anisotropic
gratings with arbitrary permittivity and permeability
tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003).

L. Li, “Mathematical reflections on the Fourier modal
method in grating theory,” in Mathematical Modeling in
Optical Science, G. Bao, ed. (SIAM, 2001), Chap. 4.

E. Popov and M. Neviere, “Differential theory for
diffraction gratings: a new formulation for TM polarization
with rapid convergence,” Opt. Lett. 25, 598-600 (2000).

10.

11.

12.

13.

14.

15.

16.

H. Kim and B. Lee

E. Popov and M. Neviere, “Grating theory: new equations
in Fourier space leading to fast converging results for TM
polarization,” J. Opt. Soc. Am. A 17, 1773-1784 (2000).

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as
nonlinear  coordinate  transforms: a  generalized
formalization,” J. Opt. Soc. Am. A 22, 1844-1849 (2005).
L. Li, “Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings,” J.
Opt. Soc. Am. A 13, 1024-1035 (1996).

H. Kim, I.-M. Lee, and B. Lee, “Extended scattering matrix
method for efficient full parallel implementation of rigorous
coupled wave analysis,” J. Opt. Soc. Am. A 24, 2313-2327
(2007).

E. Popov, M. Neviere, B. Gralak, and G. Tayeb, “Staircase
approximation validity for arbitrary-shaped gratings,” J.
Opt. Soc. Am. A 19, 33-42 (2002).

W. Jiang and R. T. Chen, “Rigorous analysis of diffraction
gratings of arbitrary profiles using virtual photonic
crystals,” J. Opt. Soc. Am. A 23, 2192-2197 (2006).

H. Kim, S. Kim, I.-M. Lee, and B. Lee, “Pseudo-Fourier
modal analysis on dielectric slabs with arbitrary
longitudinal permittivity and permeability profiles,” J. Opt.
Soc. Am. A 23, 2177-2191 (2006).

K. Mehrany and B. Rashidian, “Polynomial expansion of
electromagnetic eigenmodes in layered structures,” J. Opt.
Soc. Am. B 20, 2434-2441 (2003).

M. Chamanzar, K. Mehrany, and B. Rashidian, “Legendre
polynomial expansion for analysis of linear one-
dimensional inhomogeneous optical structures and
photonic crystals,” J. Opt. Soc. Am. B 23, 969-977 (2006).
M. Chamanzar, K. Mehrany, and B. Rashidian, “Planar
diffraction analysis of homogeneous and longitudinally
inhomogeneous gratings based on Legendre expansion of
electromagnetic fields,” IEEE Trans. Antennas Propag. 54,
3686-3694 (2006).



