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Abstract: We present a method to calculate wave propagation between 
arbitrary curved surfaces using a staircase approximation approach. The 
entire curved surface is divided into multiple subregions and each curved 
subregion is approximated by a piecewise flat subplane allowing the 
application of conventional diffraction theory. In addition, in order to reflect 
the local curvature of each subregion, we apply the phase compensation 
technique. Analytical expressions are derived based on the angular spectrum 
method and numerical studies are conducted to validate our method. 
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1. Introduction 

Numerical methods for effective calculation of diffracted fields have been intensively 
investigated and adopted in various areas of optics, typically in digital holography. Several 
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types of computation methods, which have corresponding mathematical expressions, originate 
from the Rayleigh-Sommerfeld diffraction formula [1,2] and are selectively employed 
according to the specific purposes and physical conditions of the application. Two important 
factors that have to be considered in the field calculation are high accuracy and fast 
computation, which are inherently incompatible. Hence, most of the methods, such as Fresnel 
diffraction and the angular spectrum (AS) method, include fast Fourier transform (FFT) 
algorithms in their calculation procedure [3]. 

Among these, the AS method is rigorous, yielding results with no approximations. This 
method calculates field propagation by decomposing the wave field distribution on a plane 
into plane wave components. The weakness of the conventional AS propagation method is 
that it only guarantees precision in the near-field region that can be specified by Nyquist 
sampling theory. The band-limited AS method, however, can be exploited in far-field regions 
to a certain extent via band limitation of the propagation transfer function [4]. Utilization of a 
wide calculation window with linear convolution also broadens the applicability of the AS 
method in both far and near fields [5]. 

Our study is inspired from the fact that conventional numerical calculation methods are 
mainly limited to propagation between parallel planes, although there are several techniques 
for tilted or shifted planes [6–12]. Until recently, there have been a few studies on optical 
wave propagation from curved surfaces. To mention a few, Esmer et al. presented a field 
model based algorithm that is developed to achieve exact calculation results with high 
computational cost [13]. Shimobaba et al. proposed a calculation method for Fresnel 
diffraction from an arbitrary shaped surface to a flat plane by using non-uniform FFT [14]. 
The approach introduced by Sahin et al. uses local Gaussian beam decomposition of whole 
fields diffracted from curved geometries [15,16]. 

In this paper, we propose a novel diffraction calculation scheme, which can be employed 
to study the propagation between two arbitrary curved surfaces. To the best of our knowledge, 
this is the first report on a method, based on the AS method, that implements segmentation of 
the whole surface region. In Section 2, we present the analytical formulation of the proposed 
method. In Section 3, using the derived expressions, we show numerical results in order to 
validate our method. Finally, in Section 4, we provide concluding remarks, accompanied with 
a consideration of an efficient calculation issue. 

2. Theory 

In this section, we introduce a theoretical approach for diffraction analysis in which an 
arbitrary curved surface is involved. Throughout this paper, all the studies are conducted on 
the two-dimensional field calculation for the sake of simplicity. 

2.1 Method 1: staircase approximation with uniform segmentation along the transverse 
direction 

A basic outline of our method is illustrated in Fig. 1. As shown in the figure, the curved 

surface ( )z g x  is divided uniformly along the transverse (x-axis) direction and each 

subregion is approximated by a piecewise flat surface perpendicular to the longitudinal (z-

axis) direction. Here and later, we restrict our analysis to the case that ( )g x  is an arbitrary 

single-valued function. 
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Fig. 1. Schematics of the transversely uniform segmentation method for calculation of (a) 
propagation from an arbitrary curved surface to a flat plane and (b) the opposite case. 

For wave propagation from an arbitrary curved surface ( )z g x  to a plane at 0z z  

shown in Fig. 1(a), the angular spectrum of the field confined within the n-th subplane at 

( )z g n x   can be expressed as 

 ( ; ( )) ( ) ( , )rect exp( 2 ) ,n x i p x

x n x
A f z g n x u x g n x x i f x dx

x






  
     

 
  (1) 

where 

  ( , ) exp ( ) ( ) ,pg n x x ik g n x g x        (2) 

k  is the wave number defined as 2 /k   , with   being the wavelength of light, 
xf  is the 

spatial frequency along the x-axis, ( )iu x  denotes an input field distribution on the curved 

surface ( )z g x , and the rectangular window function rect(x) is defined as 

 

1,  1/ 2

rect( ) 1/ 2, 1/ 2

0. otherwise

x

x x




 



  (3) 

Note that by using the paraxial approximation in each subregion, the phase compensation 

term ( , )pg n x x  included in Eq. (1) reveals the effects of the local curvature. This 

compensation term plays an important role in improving accuracy when the number of 

segments is not sufficient. 

Field propagation via the AS method yields the output field distribution at 0z z  

generated from the n-th subregion: 

   2 2

, 0( ) ( ; ( ))exp ( ) 1 exp( 2 ) .o n n x x x xu x A f z g n x ik z g n x f i f x df       
 




 (4) 

In this equation, we only consider the frequency component xf  that satisfies 2 21/xf   in 

order to exclude evanescent wave components. Finally, the field distribution at 0z z  

diffracted from the whole surface ( )z g x  can be obtained by summing all the field 

components as 

 
,( ) ( ).o o n

n

u x u x   (5) 
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In a similar fashion, as depicted in Fig. 1(b), the analytical expression for the opposite 
process can be written as follows: 

 ,( ) ( ) ( , )rect ,o o n p

n

x n x
u x u x g x n x

x

  
   

 
   (6) 

where 

   2 2

, 0 0( ) ( ; )exp ( ) 1 exp( 2 ) ,o n x x x xu x A f z z ik g n x z f i f x df 



     
 

  (7) 

and 

 
0( ; ) ( )exp( 2 ) .x i xA f z z u x i f x dx  


  (8) 

Here, the rectangular window function can be replaced by other functions depending on 
the specific conditions. For example, we can use the Gaussian window function, 

 

2

( ) exp .n

x n x
w x

x


   
   

   

  (9) 

It is interesting to note that the approximate expressions represented by Eq. (5) and Eq. (6) 
become ideal forms as Δx approaches an infinitesimally small value (i.e., the number of 
subregions goes to infinity), and the corresponding two expressions are obtained as Eq. (10) 
and Eq. (12) respectively, as follows: 

 0( ) ( ; )exp( 2 ) ,o x x xu x A f z z i f x df 


  (10) 

where 

   2 2

0 0( ; ) ( )exp ( ) 1 exp( 2 ) ,x i x xA f z z u x ik z g x f i f x dx      
 




  (11) 

and 

   2 2

0 0( ) ( ; )exp ( ) 1 exp( 2 ) ,o x x x xu x A f z z ik g x z f i f x df 



    
 

  (12) 

where 

 0( ; ) ( )exp( 2 ) .x i xA f z z u x i f x dx  


  (13) 

From Eq. (11) and Eq. (12), it is clear that the two ideal forms of expressions are similar to 
the conventional mathematical representation of angular spectrum propagation between two 
parallel planes, except that the curved surface is substituted instead of a flat plane. 
Consequently, due to this modification, Eq. (11) and Eq. (12) can no longer be considered as a 
form of a Fourier transform. 

Unfortunately, depending on the geometry of some cases, this segmentation method can 
be inefficient requiring a large number of Fourier transforms. Therefore we can predict that 
the generation of non-equal sized subregions allows an improvement in precision, without any 
increase in computational cost. 

2.2 Method 2: staircase approximation with uniform stratification along the longitudinal 
direction 

Another possible way to generate subregions is shown in Fig. 2. Instead of creating equal-
sized subdivisions along the transverse direction, we create subregions of non-uniform sizes 
through uniform longitudinal stratification. This way guarantees a certain degree of accuracy 
by equalizing the longitudinal distances between adjacent subplanes. 
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Fig. 2. Schematics of the longitudinally uniform stratification method for calculation of (a) 
propagation from an arbitrary curved surface to a flat plane and (b) the opposite case. 

Following the procedure of the previous subsection, we first establish an analytical 

formulation for propagation from an arbitrary curved surface to a plane. The angular spectrum 

of the n-th truncated field on the imaginary plane of z n x   is 

  
( )

( ; ) ( )exp ( ) rect exp( 2 ) .n x i x

n z g x
A f z n z u x ik n z g x i f x dx

z






  
           

 (14) 

Using Eq. (14), we can find the distribution at 
0z z  by summing each field component 

that is obtained by taking the inverse Fourier transform of the propagated angular spectrum: 

 
0 , 0( ; ) ( ; ),o o n

n

u x z z u x z z    (15) 

where 

   2 2

, 0 0( ; ) ( ; )exp 1 exp( 2 ) .o n n x x x xu x z z A f z n z ik z n z f i f x df 



       
 

 (16) 

Similarly, we can easily derive an expression for the inverted case depicted in Fig. 2(b). 

The resulting field distribution on a curved surface ( )g x  is given by 

  ,

( )
( ; ( )) ( ; )exp ( ) rect ,o o n

n

n z g x
u x z g x u x z n z ik g x n z

z

  
           

  (17) 

where 

   2 2

, 0 0( ; ) ( ; )exp 1 exp( 2 ) ,o n n x x x xu x z n z A f z z ik n z z f i f x df 



       
 

 (18) 

and 

 
0( ; ) ( )exp( 2 ) .n x i xA f z z u x i f x dx




     (19) 

Here again, the phase compensation technique is used in both cases. As expected, when Δz 
approaches zero, Eq. (15) and Eq. (17) are also transformed into Eq. (10) and Eq. (12), 
respectively. Note that like before, we can use other window functions, such as the following: 

 

2
( )

( ) exp .n

n z g x
w x

z


   
   

   

  (20) 
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3. Numerical results 

To verify the proposed method, numerical simulations are performed with respect to a 

circularly curved geometry with a radius of curvature R , as shown in Fig. 3. In our 

calculations, the wavelength is 500nm   and the sampling interval and the number of 

samplings are / 2p    and 2048pN  , respectively. The size of the calculation window is 

pl N p   and the width of the input geometry is / 2w l . We assume that the thickness of 

the curved surface is infinitesimally thin and the initial amplitude and phase are constant over 

the entire surface. 

Circularly 

curved surface

R
w l

x

z

 

Fig. 3. Curved geometry and calculation window for the numerical simulation. 

Figure 4 shows the amplitude of diffracted wave fields from the curved surface presented 

in Fig. 3. In these calculations, method 1 is used so that each subregion of equal width 1/w N  

produces a local diffraction field. 1N  indicates the number of subregions generated by method 

1 and the calculation results are plotted for three values of 1N : 5, 15, and 35. In Figs. 4(a)–

4(c) and Figs. 4(d)–4(f), R  is 500μm and 400μm , respectively. The diffracted fields are 

focused at different longitudinal distances as R  changes, and these consequences are 

consistent with our theory. 

The effects caused by the size of the subregions and the radius of curvature can be found 

by comparing the figures shown in Fig. 4. Since light propagation becomes nonparaxial as R  

decreases, the size of the subregions should be reduced to maintain a certain degree of 

accuracy. In other words, if the radius of curvature is shortened while the size of the 

subregions remains unchanged, the accuracy would be degraded. This can be observed by 

comparing the two columns of the results shown in Fig. 4. In addition, it can be clearly seen 

from the cases shown in Figs. 4(a) and 4(d) that an insufficient number of subregions causes 

unfavorable gaps between adjoining local field components. These gaps gradually disappear 

as the size of the subregions decreases. 

From the viewpoint of computational complexity, method 1 requires 1( 1)N   FFTs to 

calculate the field distribution at a certain longitudinal distance, i.e. 1N  forward FFTs and one 

inverse FFT for the case shown in Fig. 1(a). The calculation times for the three cross-sectional 

field distributions of Figs. 4(a)–4(c) are 27.8ms 1( 5)N  , 35.7ms 1( 15)N  , and 50.9ms 

1( 35)N   in our computing environment (Intel Core i5-2450M CPU, 8GB RAM, 64-bit 

Windows 7, and MATLAB R2013a). 
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Fig. 4. Calculated amplitude profiles of diffracted fields from the geometry shown in Fig. 3 

using method 1 with R = 500μm and (a) N1 = 5, (b) N1 = 15, and (c) N1 = 35. The corresponding 
results for R = 400μm are shown in (d)–(f). 

In Fig. 5, we present numerical simulations using method 2. 2N  indicates the number of 

subregions generated by method 2. In this case, subregions have different widths along the x-

axis due to the uniform stratification along the z-axis, so that the spacing between adjacent 

subplanes is constant. By adjusting the spacing between sampled subplanes, calculation errors 

arising from the staircase approximation can be circumscribed and controlled. As can be seen 

from the figures, subregions are more densely generated around the regions near both edges of 

the geometry, and noise field components are reduced compared to the results for method 1. 

In our numerical examples, the number of FFTs required by method 2 is less than that of 

method 1 for the same number of subregions since diffracted fields from multiple subregions 

can be simultaneously calculated using one FFT. The number of FFTs conducted by method 2 

is less than or equal to 2( 1)N  . The computation time of method 2 is not dependent on 2N  

but depends on the number of stratified subplanes which are uniformly distributed along the z-

axis. 
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Fig. 5. Calculated amplitude profiles of diffracted fields from the geometry shown in Fig. 3 
using method 2 with R = 500μm and (a) N2 = 5, (b) N2 = 15, and (c) N2 = 35. The corresponding 
results for R = 400μm are shown in (d)–(f). 

To highlight and compare the accuracy of the two methods, we present normalized cross-

sectional amplitude distributions at z = R = 400µm. Figure 6 shows results with 35N  . The 

result calculated from direct integration of Rayleigh-Sommerfeld diffraction formula is also 

plotted for comparison between the proposed methods and an accurate method. Although it 

seems that the two distributions are quite similar, signal-to-noise ratio (SNR) analysis [8] 

demonstrates that method 2 yields more accurate results: SNR values of method 1 and method 

2 are 7.29dB and 7.75dB, respectively. 

Lastly, we demonstrate the effects brought about by using a different window function and 

the phase compensation technique with method 1. Figure 7 shows the amplitude distributions 

of diffracted fields in the region around the focused spot. Figures 7(a) and 7(b) correspond to 

Gaussian and rectangular window functions, respectively. In Fig. 7(a), the rectangular window 

is replaced by the Gaussian window presented in Eq. (9) and other conditions are the same as 

in Fig. 4(f), i.e., 1 35N   and R = 400µm. Figure 7(b) is simply a magnified version of Fig. 

4(f) and is inserted for the purpose of comparison. In Fig. 7(b), edge-diffracted noise 

components due to the abrupt change of field at both sides of the rectangular windows are 

evident. On the other hand, as demonstrated in Fig. 7(a), these unwanted edge diffraction 

phenomena can be alleviated by using a window function that varies less abruptly. In Fig. 

7(c), the wave field without the phase compensation function ( , )pg n x x  is presented for 

comparison. From this comparison, the crucial role of the phase compensation function is 

manifested. 
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Fig. 6. Normalized amplitude distributions calculated from the Rayleigh-Sommerfeld 
diffraction formula (solid black line), method 1 (dashed blue line), and method 2 (dotted red 
line) at z = R = 400μm. 
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Fig. 7. Amplitude profiles around the focused spot when (a) Gaussian and (b) rectangular 
window functions are used, with method 1 and parameters of R = 400μm and N1 = 35. (c) Wave 
field without the phase compensation function. 

4. Conclusion 

We have proposed a novel method for diffraction calculation of an arbitrary curved surface 
based on the AS method. The main feature of our method is that the surface region is divided 
into multiple subregions and the AS method is applied with regard to each subregion. In 
addition, a phase compensation technique is utilized to reduce approximation errors that occur 
due to the finite number of subregions. The proposed method has been verified through 
numerical investigations on a circularly curved geometry. One can readily exploit our 
approach in three-dimensional diffraction calculations since the proposed method can be 
straightforwardly extended. Although the formulations presented are based on the AS method, 
our approach can be employed in other formulations such as Fresnel diffraction. A possible 
drawback is the requirement of a large number of FFT operations depending on the geometry. 
This disadvantage, however, can be overcome by adopting an optimized subregion-generating 
algorithm and parallel computation techniques [17]. We believe that our approach will 
provide a fundamental basis for field calculations with curved geometries. 
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