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Abstract: A scheme for the excitation of slow surface plasmon pulses using 
photonic interband transition in a metal-insulator-metal (MIM) waveguide 
is proposed. An investigation the mode transition behavior inside the binary 
grating confirmed that the proposed concept can be understood in terms of 
the coupling of symmetric and anti-symmetric plasmonic modes. We 
observed that, although a binary grating that is optimized for a single 
frequency can excite slow surface plasmon pulses, it is inadequate for 
broadband mode conversion. To rectify this, a chirped grating was designed 
for the demonstration of broadband mode conversion by applying a cascade 
mode transition with different frequencies. 
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1. Introduction 

Plasmonics enables the excitation and manipulation of strongly confined electromagnetic 
fields in the deep subwavelength region. High-intensity electric fields in plasmonic structures 
can enhance the interaction between light and matter and this can be usefully applied to the 
design of integrated optical devices and nonlinear optics. In particular, metal-insulator-metal 
(MIM) waveguides have been considered for use as effective structures for confining guided 
waves in the several tens of nanometers due to the surrounding metallic walls [1, 2]. More 
interestingly, in metallic walls of waveguides, the direction of the phase and energy flow can 
be opposite because of the negative permittivity of metals [3]. As a result of the negative 
power flow, it has been reported that sufficiently thin MIM waveguides can be utilized to 
support stopped wavepackets when the power flows in the dielectric core and metallic 
cladding are balanced [4]. The usual strategy for obtaining stopped wavepackets involves the 
use of tapered structures, so-called the ‘rainbow trapping waveguides’ [5–8]. It has been 
reported that tapered metamaterial waveguides or chirped gratings for spoof plasmons are 
capable of stopping light of different colors at different positions. However, less attention has 
been focused on the potential use of non-tapered waveguides, since slow wavepackets will 
not propagate from one end to the middle of a plasmonic waveguide. Here, we note that there 
are other slow light mechanisms, including electromagnetically induced transparency [9, 10] 
or Bragg reflections in photonic crystals [11]. However, to retain atomic coherence, 
electromagnetically induced transparency requires cryogenic conditions, and photonic crystal 
devices are generally much larger than plasmonic ones. 

On the other hand, the induction of photonic interband transition using gratings or the 
time dependent modulation of permittivity is a well-known strategy in guided optics [12, 13]. 
The theoretical basis of this discipline is usually explained by the coupled mode theory in the 
case of weak perturbation, and oscillatory energy transfer between coupled modes is 
understood to be universal in such systems. Attempts have been made to realize efficient 
optical delay lines or optical buffers by using photonic interband transitions in photonic 
crystals [14, 15] or dynamically modulated coupled cavity systems [16, 17]. The use of a 
photonic interband transition can be useful for the excitation of slow light pulses inside a 
waveguide because designing an active device is much easier compared to tapered 
waveguides. However, dynamic photonic crystal-based devices not only generally have large 
footprints but also convert input pulses to slow light incompletely. The complete trapping of 
light has been achieved in [16], but a complicated temporal modulation of permittivity was 
required. Hence, the next step would be the design of a spatial permittivity profile that 
enables efficient conversion to slow light with simple on/off or harmonic temporal 
modulation. 

In this paper, we report on an analysis of the mode transition behavior caused by gratings 
in MIM waveguides that supports both slow (ng ≈83.1) anti-symmetric plasmonic modes and 
relatively fast (ng ≈22.6) symmetric plasmonic modes. We first designed a binary grating that 
optimally couples the symmetric mode to the anti-symmetric mode at a single frequency. 
Pulse simulation showed that optimized gratings can excite slow plasmonic pulses, but the 
conversion is efficient only within a small spectral interval, leaving a portion of the incident 
pulse unconverted. In order to eliminate this unconverted residual pulse which originates 
from the resonant narrowband nature of the grating, we designed a chirped grating. The 
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findings show that this chirped grating enables the nearly complete conversion of incident 
pulses into slow plasmonic mode pulses. The Fourier modal method (FMM) which has 
advantages for modal analysis was used for the simulations throughout this work [18]. 

2. Proposed structure and design of MIM waveguide 

A conceptual illustration of the proposed structure is depicted in Fig. 1(a). The guided modes 
considered for modal transitions are the symmetric and anti-symmetric plasmonic modes that 
exist in the MIM waveguide. In our case, a pulse of the symmetric plasmonic mode is the 
input excitation because it is faster and less propagation loss is involved, compared to the 
anti-symmetric mode. Inside an MIM waveguide, a grating that occupies half of the MIM 
core is introduced for waveguide mode conversion. When the incident pulse meets the 
grating, a photonic interband transition from the symmetric mode to the anti-symmetric mode 
occurs, provided the difference between the propagation constants of the two modes is 
correctly compensated by the grating momentum. Grating parameters such as the grating 
period, index difference, and grating length should be carefully designed for efficient mode 
transition. In this section, we focus on an analysis of the MIM waveguide mode dispersion 
relationship and estimation of the optimal grating period. Optimization of the waveguide 
grating is described in later sections. To model electromagnetic response of metal, we used 
the Drude model: 

 
2

2
( ) 1 ,p

m i

ω
ε ω

ω γω
= −

+
 (1) 

where it is assumed that the metal has the plasma frequency of gold ( 8.55 eV)pω =   [19] and a 

negligible damping constant ( 1.84 eV).γ μ=  Note that we examine a nearly lossless case to 
separate exponential decay from mode transition behavior. 
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Fig. 1. (a) Schematic of the proposed structure. A grating inside an MIM waveguide (w = 50 
nm, εd = 12.15) couples symmetric and anti-symmetric modes. It converts symmetric mode 
pulse of temporal width 200 fs to 4-fold slower anti-symmetric pulse. Waveguide dispersion 
relation depending on (b) the permittivity of core material and (c) the width of waveguide. 
Solid and dashed lines represent symmetric and anti-symmetric plasmonic modes respectively. 

Figures 1(b) and 1(c) show plots of the dispersion relation of the symmetric and anti-
symmetric modes with varying waveguide width and permittivity of the dielectric region, in 
order to find an appropriate value for the slow anti-symmetric mode. It has been reported that 
the conditions for the existence of a stopped anti-symmetric mode in MIM waveguides is 
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given by [ ]1 Re / 1.28m dε ε< − <  [4]. Therefore, the permittivity of the core dielectric material 

determines the frequency range of the stopped anti-symmetric modes, as shown in Fig. 1(b). 
For this work, we chose the dielectric to be Si ( 12.15)dε = which fixes our frequencies of 
interest at around 2.05eV, roughly corresponding to a free space wavelength of 600 nm. 

From Fig. 1(c), we can observe how the width of the MIM waveguide affects the 
dispersion relation.According to the explanation in [4], the power flow through the metal 
region is in the opposite direction to the phase flow, whereas they are in the same direction 
within the dielectric region. When the width of the waveguide is changed, the portion of the 
field occupying the metal and dielectric regions is also changed. As the waveguide becomes 
thinner, the portion of power flow on the metal increases; hence, the anti-symmetric mode 
becomes a backward mode since the direction of group velocity is determined by the net flow 
of the metal and the dielectric region. On the other hand, when the waveguide becomes thick, 
the power transmission through the dielectric becomes large, and then the anti-symmetric 
mode becomes a forward mode. Between these two extremes, it is possible for forward and 
backward modes to exist simultaneously in MIM waveguides and the slow light dispersion 
appears near the mode degeneracy. In this study, we set the waveguide width at 50 nm in 
order to obtain a group velocity ratio for the two modes ,ant ,sym( / 0.27).g gv v ≈ As depicted in 

Fig. 2, the selected central wavelength and spectral bandwidth of the input pulse are λ0 = 613 
nm and Δλ = 10 nm (corresponding to a temporal width of Δt = 200 fs), respectively. The 
repetition period is assumed to be T = 10 ps and 81 rounds of FMM simulations were needed 
to express the Gaussian pulse input. 
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Fig. 2. Dispersion relation of the symmetric (black solid) and anti-symmetric (black dashed) 
modes for MIM waveguide (w = 50 nm, εd = 12.15). Red dash-dotted lines mark the linewidth 
of the input pulse. The inset shows the shape of the input pulse in the temporal domain. 

3. Design of a binary grating and its pulse response 

As a first step, we consider a simple periodic binary grating. To design such a grating, we 
applied the coupled mode theory for waveguides which works well for small perturbations. 
Given the permittivity profile ( )xε and sinusoidal perturbation ( , ) ( ) cos( ),x z x qzδε ε= Δ the 
governing equation of the waveguide is the Helmholtz equation: 

 
2 2

2
2 2

( ) ( , ) ,x U x z U
c c

ω ωε δε 
∇ + = − 
 

 (2) 
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where ( , , )U x z t can be either a component of the electric or magnetic field. Considering two 

waveguide modes of interest with propagation constants 1β and 2 ,β we can express the 
electromagnetic field in the waveguide as a linear combination of two modes with 
coefficients that vary along the direction of propagation: 

 1 2( ) ( )
1 1 2 2( , , ) ( ) ( ) ( ) ( ) .i z t i z tU x z t a z U x e a z U x eβ ω β ω− −= +  (3) 

Substituting this expression into the Helmholtz Eq. (2) gives the differential equations for 
coefficients which are called the coupled mode equation: 
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Here, 1 2qβ βΔ = + −  is called the detuning factor and κ is the coupling coefficient 

proportional to the overlap integral of the form *
1 2( ) ( ) ( ) ,U x x U x dxε

∞

−∞
Δ which implies that 

the anti-symmetric part of the transverse permittivity profile is responsible for the coupling 
between the symmetric and anti-symmetric modes. Therefore, the grating is designed so as to 
asymmetrically fill half of the core as shown in Fig. 1(a). Solving this equation for the initial 
conditions, 1(0) 1,a = and 2 (0) 0,a =  gives the following expressions for the modal population 
[12]: 
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 (5) 

From Eq. (5), it can be seen that complete energy transfer from mode 1 to 2 is possible 
only when the detuning factor is zero. This condition is called the phase matching condition 
or perfect momentum compensation and it is widely used in the design of grating periods. We 
note that arbitrary periodic gratings of the same period work similarly to cosine gratings 
except that higher order harmonic terms also need to be considered. 

Now, we design a binary grating that completely converts the symmetric mode to the anti-
symmetric mode of the MIM waveguide. The optimal grating period can be estimated from 
the phase matching condition. Where the optimal grating period varies with the frequency, we 
choose the central frequency of the input pulse as a representative frequency. The difference 
in permittivity between silicon and the perturbed dielectric is fixed at 0.4 and the fill factor is 
set at 0.5. We note that it is not necessary for the grating strength and fill factor to be fixed at 
these values for complete mode conversion. As will be clear in Fig. 3(b), for a different 
choice of grating strength, complete mode conversion can be done by a fine tuning of the 
grating period and appropriate adjustment of the grating length. An adjustment of the fill 
factor is essentially the same as a change in grating strength in the sense that both changes the 
coupling coefficient of the symmetric and anti-symmetric modes, but do not change the 
detuning factor. Hence, we can choose different set of grating strengths and fill factors in 
designing a mode converter. 

The optimal grating period was found by a parametric study near the estimated value 
deduced from the dispersion relation in Fig. 2. Figure 3(a) shows the oscillatory modal energy 
transfer inside the binary grating when the symmetric mode is launched from the left side of 
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the grating. Since we should design the grating to have the largest conversion efficiency with 
shortest possible grating length, we marked the optimal number of periods as opt ,N where the 

modal population of the symmetric mode is the smallest, as indicated in Fig. 3(a). For each 
grating period ,Λ we adjusted the grating length at opt ( )N Λ and obtained the normalized output 

power flow for the anti-symmetric mode, as shown in Fig. 3(b). The result showed that 
complete mode conversions were possible for grating strengths 0.2, 0.3 and 0.4. The optimal 
grating period shifts from the estimated value ( 151nm)Λ =  with increasing grating strength. 

The optimal grating length was 159 nmΛ ≈ for 0.4.εΔ =  The difference in the optimal grating 
period from the estimated value is due to the change in modal index caused by the symmetric 
part of the permittivity perturbation profile. 
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Fig. 3. (a) Normalized power flow for the symmetric (blue) and anti-symmetric (red) modes 
along the z-axis. The solid lines and dotted lines represent the cases 
for 159 nmΛ = and 170 nm,Λ =  respectively. The grating strength is set to 0.4. (b) 
Normalized output power flow of the anti-symmetric mode as a function of grating period. The 

length of the grating is adjusted at optN number of periods for each grating period. 

The response of the designed grating to pulses was examined by launching the pulse 
specified in the previous section. Figure 4(a) shows the normalized power transmission of the 
two modes for an incident symmetric mode pulse. It is observed that the symmetric mode at 
the central frequency is almost perfectly suppressed, but the conversion efficiency drops to 
zero as detuning increases to more than 3 nm. Hence, a considerable portion of the symmetric 
mode pulse remains unchanged, thus causing a complicated pulse profile, as shown in Figs. 
4(c)-4(f). First, a portion of the symmetric mode pulse is converted to an anti-symmetric 
mode pulse and the two pulses then split due to a difference of group velocity. Some 
populations of the anti-symmetric modes are then transferred back into symmetric modes and, 
consequently, split symmetric and anti-symmetric mode pulses appear in the output. 
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Fig. 4. (a) Normalized power transmission for a periodic grating. Dashed lines represent the 
normalized power transmittance spectrum and solid lines represent the output pulse spectra for 

Gaussian pulse input. (b) yH field distribution after the pulse passed through the binary 

grating (Media 1). Snapshots of power flow profiles at (c) 200 fs before the peak of pulse 
enters the grating, and at (d) 80 fs, (e) 280 fs and (f) 600 fs after its entry. Red and blue lines 
mark anti-symmetric and symmetric modes, respectively. 

A scheme using binary gratings might be sufficient, provided that it is enough to excite 
slow pulses at a desired position. However, a significant portion of input energy is wasted and 
the system bandwidth is severely limited. For optical information processing applications, it 
may be undesirable to pass residual symmetric mode pulses. Therefore, a broadband design 
that can successfully suppress symmetric mode output is essential. In the next section, we 
present a potentially simple solution to this issue. 

4. Nearly perfect transition of the pulse by using chirped grating 

In order to deal with the broadband design issue discussed above, we start with the origin of 
the problem that we already know, i.e. the fact that the grating is optimized only at the central 
frequency. Increasing the strength of perturbation may help because the spectra of the 
converted output become broader as shown in Fig. 3(b). However, such an approach is 
vulnerable to side effects including strong and complicated reflection spectra or unexpected 
coupling to modes other than the two waveguide modes under consideration. Instead, it is 
better to cascade binary gratings with different grating periods. Let us imagine a simple case 
in which we launch symmetric modes of frequencies 1ω and 2ω to two cascaded gratings that 
are tuned for each frequency. Their mode conversions will occur at different positions for two 
frequencies. While the mode transition occurs at the tuned grating, the modal population 
fluctuates weakly at the detuned grating. Extending the two cascade gratings to a nearly 
continuously chirped grating, high and uniform mode conversion efficiency over the spectral 
range of the input pulse would be expected. To examine possibility, we designed a chirped 
grating with a decreasing grating period as depicted in Fig. 5(a). The nth grating period nΛ is 
determined by the following recursive relation: 

 0
1

2 2
0.006 ,

n n

q
π π

−

= +
Λ Λ

 (6) 
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where 02 / 159 nmqπ =  corresponds to perfect phase matching for the central frequency. 
Because the grating periods that satisfy the phase matching condition for wavelengths of 608 
nm and 618 nm are 177 nm and 141 nm, respectively, the local grating period range must 
include these values. In practice, a margin should be present at both ends to retain conversion 
efficiency over the entire spectral range of input pulse. Therefore, we chose the following 
values: 1 188 nmΛ ≈  and 60 133 nm.Λ ≈  
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Fig. 5. (a) The up-chirped grating structure inside a MIM waveguide. Normalized power flow 
in the chirped grating at wavelengths of (b) 618 nm, (c) 613 nm and (c) 608 nm, respectively. 
Red and blue lines mark anti-symmetric mode and symmetric mode, respectively. 

The mode transition behavior inside the chirped gratings are shown in Figs. 5(b)-5(d), 
confirming our predictions that a lower frequency mode requires a larger grating momentum 
for compensation, as deduced from Fig. 2. The results show that the transition point indeed 
shifts from the rear to the front as the wavelength decreases. We also observe that the 
fluctuation before and after the transition region is too small to significantly affect overall 
conversion efficiency. 
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Fig. 6. (a) Normalized power transmission spectrum of chirped grating. Dashed lines represent 
normalized power transmittance spectra and solid lines represent the output pulse spectra for 

Gaussian pulse input. (b) yH field distribution after the pulse passed through the chirped 

grating (Media 2). Snapshots of the power flow profile at (c) −200 fs, (d) 480 fs, (e) 920 fs and 
(f) 2000 fs. Red and blue lines mark the anti-symmetric mode and symmetric mode, 
respectively. 
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The resulting transmission spectrum of the designed chirped grating is shown in Fig. 6(a). 
The transmission spectrum of the symmetric mode is nearly perfectly suppressed while the 
transmission spectrum of the anti-symmetric mode is similar to the input pulse spectrum. 
Hence, a fast surface plasmon pulse has been nearly perfectly converted to a slow surface 
plasmon pulse. Figures 6(c)-6(f) show snapshots of the pulse conversion process, also 
confirming that the symmetric mode pulse is suppressed at the output. 

Lastly, we conclude by discussing possible fabrication processes and measurement setups. 
For fabrication, a metal film should be deposited on a glass substrate and an in-coupling slit 
needs to be carved using a focused ion beam (FIB) technique. A silicon film should then be 
deposited and doped to form an asymmetric grating via the use of a mask with a grating 
pattern. Depositing a metal film once again and carving an out-coupling slit gives the desired 
device. For characterization of the fabricated device, the fact that the slow anti-symmetric 
mode entails more propagation loss than the symmetric mode can be exploited. First, multiple 
copies of the sample need to be fabricated, but the distance between the grating and the out-
coupling slits should be different. From out-coupled light intensity data, it is possible to 
measure the decay characteristics after the grating and calculate the mode conversion 
efficiency. In order to confirm the broadband conversion characteristics, a tunable laser 
system can be used to measure its spectral properties. 

7. Conclusion 

A method for the efficient excitation of slow plasmonic pulses inside an MIM waveguide is 
proposed. A photonic interband transition induced by the grating was used as a mechanism to 
excite target modes at the desired position. FMM simulations confirmed that the mode 
transition behavior can be explained through coupled mode theory. Simple binary gratings 
optimized for a single frequency can excite slow pulses but residual fast mode pulses remain 
and the operating bandwidth is limited. On the other hand, that the use of a chirped grating, 
which can be considered as a cascade of small gratings with different grating periods, can 
significantly reduce residual pulses. This is because a chirped grating is effectively a cascade 
of gratings, each of which converts the symmetric mode to the anti-symmetric mode at 
different frequencies. The proposed scheme is preferable to tapering strategy for the design of 
active devices and it is expected to greatly simplify the temporal modulation profiles that are 
needed for active light trapping waveguide structures. Moreover, if a time dependent grating 
is employed, as discussed in [20–22], symmetric modes that are close to the light-line can be 
frequency up-converted to excite a slow surface plasmon pulse, resulting in a more dramatic 
reduction in group velocity. Hence, the extension of this work to dynamic structures may 
have significant implications for the development of surface plasmon buffers for photonic 
computing. 
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