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By isolating a finite effective volume from a conventional triangular pyramid corner cube, we obtained
truncated corner cube structures with greatly enhanced retroreflection efficiency. We explore an optimal
truncated corner cube with near 100% retroreflection efficiency based on the expectation that the trav-
eling paths of the optical rays can be localized in the finite effective volume of the structure, and, as a
result, truncated corner cubes with perfect efficiency can be produced. As a case study, the retroreflection
efficiency of a commercialized 3M truncated corner cube sample is evaluated. Furthermore, it is shown
with numerical verification that a truncated corner cube array sheet with near-perfect retroreflection
efficiency can be produced. © 2014 Optical Society of America
OCIS codes: (080.2740) Geometric optical design; (120.5700) Reflection; (120.4570) Optical design of

instruments.
http://dx.doi.org/10.1364/AO.53.007972

1. Introduction

Retroreflection involves the return of light back to-
ward the optical source along the line of incidence.
Retroreflection is widely used for engineering appli-
cations such as safety vests and traffic signs, and in
retroreflective projection technology [1–5]. A triangu-
lar pyramid corner cube is a commonly used optical
device for optical retroreflection. In many applica-
tions, retroreflection performance is evaluated in
terms of retroreflection efficiency. The retroreflection
efficiency is defined by the ratio of the retroreflection
power to the total illumination power. For the con-
ventional pyramid corner cube, the retroreflection ef-
ficiency can be interpreted as the areal ratio of the

effective area through which an incident light ray
bundle passes and is properly retroreflected to an op-
tical source to the whole entrance facet area of the
corner cube.

In principle, the retroreflection of a conventional
triangular pyramid corner cube with reflecting facets
is omnidirectional, but, due to limitations in retrore-
flection efficiency, a transparent dielectric corner
cube structure based on total internal reflection is
commonly used in practice. In this case, the effective
retroreflection area is strongly dependent on the
structural parameters and the direction of incident
light. In previous studies on the optical properties
of corner cube structures [6–12], it has been shown
that, in theory, the maximum retroreflection effi-
ciency of a conventional triangular pyramid corner
cube is 68%.
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The effective retroreflection area refers to a speci-
fied region on the entrance facet of the corner
cube through which incident rays can be perfectly
retroreflected through triple orthogonal total inter-
nal reflections. The rays that fall outside the effective
retroreflection area do not experience triple total in-
ternal reflections at perfectly orthogonal facets and
thus deviate from the perfect retroreflection path.
These stray rays are considered as optical loss from
the performance point of view.

Given the presence of this effective retroreflection
area, it is assumed that, if the finite volume within
the effective area of the triangular pyramid corner
cube is isolated and a truncated corner cube is pro-
duced, near-perfect (100%) retroreflection efficiency
can be achieved. Furthermore, a periodic array of
individual truncated corner cubes would be expected
to form a perfect corner cube sheet with near 100%
retroreflection efficiency. This expectation leads to
the supposition that the traveling paths of the optical
rays that succeed in retroreflection can be localized
in the finite effective volume inside the truncated
corner cube structure.

In this paper, we investigate the feasibility of a
100% efficient retroreflection corner cube and test
the validity of the supposition above with ZEMAX op-
tical modeling software. The truncated corner cube is
geometrically modeled, and an estimation method
for the effective retroreflection efficiency is proposed.
In this study, the effect of the sidewalls of the trun-
cated corner cube on retroreflection is given particu-
lar attention. We carry out structural optimization of
the truncated corner cube structure and, as a result,
present an optimal design for a truncated retroreflec-
tion corner cube with near 100% retroreflection
efficiency, which supports the validity of the finite ef-
fective retroreflection volume. As a case study, the
retroreflection efficiency of a commercialized trun-
cated corner cube sheet produced by 3M Co. [13,14]
is analyzed. This paper is organized as follows. In
Section 2, the geometric structure of the truncated
corner cube is modeled and the structure of the
3M corner cube sheet (3M Scotchlite ASTM level IX
corner cube sheet) is analyzed. In Section 3, a method
for estimating the effective retroreflection area of the
truncated corner cube structure is described with ZE-
MAX, and the effective retroreflection efficiency of
the 3M corner cube is numerically measured. The ef-
fective retroreflection areas of the truncated corner
cube sheets are visualized in Section 4, and conclud-
ing remarks follow in Section 5.

2. Geometric Structure of a Truncated Corner Cube

In Fig. 1(a), a triangular pyramid corner cube struc-
ture is shown in the form of its local coordinate sys-
tem �x; y; z�, where the apex point of the corner cube
is put on the origin, (0, 0, 0), and the three vertices of
the entrance facet are on the x, y, and z intercepts,
(x0, 0, 0), (0, y0, 0), and (0, 0, z0), respectively. The ret-
roreflection efficiency of the triangular pyramid cor-
ner cube can be the theoretical maximum value of

68%, and the retroreflection area has a hexagon pat-
tern [11]. The tilting angle of the triangular pyramid
corner cube structure is defined by the angle of inter-
section of the surface normal vector and the reference
vector nref � �1; 1; 1�. The surface normal of the en-
trance facet is n � �1∕x0; 1∕y0; 1∕z0�. The tilt angle
ρ is given by

ρ � acos
�

1∕x0 � 1∕y0 � 1∕z0���
3

p ��������������������������������������������������������������
�1∕x0�2 � �1∕y0�2 � �1∕z0�2

p �
: (1)

The truncated corner cube is extracted by cutting
the rectangular part in the entrance facet. The cut-
ting direction is in the normal direction to its en-
trance facet as shown in Fig. 1(a). As a result, the
truncated corner cube has three sidewalls, W12, W23,
and W41, which are specified by the areas shaded in
red in Fig. 1(a). The normal vectors of the sidewalls
are perpendicular to the entrance facet. The corner
points of the entrance facet are denoted by P1, P2,
P3, and P4, which are on the edges of the triangular
pyramid corner cube. To maximize retroreflection ef-
ficiency, the rectangular area P1P2P3P4 should be
covered by the hexagonal retroreflection area of
the triangular pyramid corner cube.

The corner points, P1, P2, P3, and P4, are the points
of internal division of the edges of the triangular en-
trance facet. Let the truncation ratio bem∶n; then the
points P1, P2, P3, and P4 can be represented, in terms
of the intercepts, x0, y0, and z0, as follows,

P1 � n
m� n

�0; 0; z0� �
m

m� n
�x0; 0; 0�; (2a)

P2 � n
m� n

�0; 0; z0� �
m

m� n
�0; y0; 0�; (2b)

P3 � p
p� q

�x0; 0; 0� �
q

p� q
�0; y0; 0�; (2c)

P4 � P3 � �P1 − P2�: (2d)

p and q are expressed in terms of P1 � �P1x; 0; P1z�
and P2 � �0; P2y; P2z�, respectively, as

Fig. 1. (a) Construction of the truncated corner cube and (b) trun-
cated corner cube as depicted in the global coordinate system.

20 November 2014 / Vol. 53, No. 33 / APPLIED OPTICS 7973



p �
� ����������������

x20 � y20

q
−

����������������������
P2
1x � P2

2y

q �
∕2; (3a)

q �
����������������
x20 � y20

q
− p: (3b)

The plane equations of the sidewalls, W12, W23,
W34, and W41, are obtained as

W12∶n12 · �r − P1� � 0; (4a)

W23:n23 · �r − P2� � 0; (4b)

W34:n34 · �r − P3� � 0; (4c)

W41:n41 · �r − P4� � 0; (4d)

where n12, n23, n34, and n41 are the surface normals of
W12W23W34, and W41, respectively, and given as

n12 � n × �P2P1
�������!�; (5a)

n23 � n × �P3P2
�������!�; (5b)

n34 � n × �P4P3
�������!�; (5c)

n41 � n × �P1P4
�������!�: (5d)

By changing the truncation ratio ofm∕n (or setting
n � 1 and changing m), we can obtain several trun-
cated corner cubes with different entrance facets.
The truncated corner cube is presented in the global
coordinate system, �x00; y00; z00�, in Fig. 1(b). The inci-
dence and azimuthal angles of an incoming ray are
denoted by θin and ϕin, respectively.

Using this structure model, we carry out structural
analysis of a commercialized truncated corner cube
sheet produced by 3M Co. In Fig. 2, the top-view mi-
croscope image and schematics of the disassembled
truncated corner cube sheet are presented with mea-
surements for the dimensions. Figures 2(a) and 2(b)
show the top view of the truncated corner cube model
and the entrance facet area of the truncated corner
cube structure relative to the original triangular
pyramid corner cube, respectively. Since, during a
practical inspection of the truncated corner cube,
the cross section of the truncated corner cube is rel-
atively easy to measure, the measured dimensions of
both the top view and the cross-section view of the
truncated corner cube are indicated in Figs. 2(c)
and 2(d), respectively.

For an isosceles triangular pyramid corner cube
with the base angle θ1, we can set x0 � y0, and
x0∕z0 is solved as

cos θ1 � z0�������������������������������
1
2 �x0�2 � �z0�2

q � 1������������������������������
1
2 �x0∕z0�2 � 1

q : (6a)

For the example in Fig. 2, the measured value of
the base angle θ1 is 44.92°. From Eq. (6a), x0∕z0 is
obtained as

x0∕z0 �
��������������������������������������
2
�

1

�cos θ1�2
− 1

�s
� 1.4103: (6b)

Let us consider the scale-normalized structure con-
straint by

�1∕x0�2 � �1∕y0�2 � �1∕z0�2 � 1; (6c)

then the structural parameters are calculated as
x0 � 1.9972, y0 � 1.9972, and z0 � 1.4162. The tilt
angle of the structure ρ is calculated from Eq. (1)
to be 9.6556°. The directional vector of the incidence
ray with incidence angle, θin, and azimuth angle,
ϕin, is

�kix;kiy;kiz�� �cos ϕin sin θin;sin ϕin sin θin;−cos θin�:
(7a)

The directional vector of the refracted ray in the
triangular pyramid corner cube with refractive index
nc is

�krx; kry; krz� � �cos ϕr sin θr; sin ϕr sin θr;− cos θr�:
(7b)

The refraction vector is solved by the incidence
vector as

Fig. 2. (a) Structure of the 3M truncated corner cube sheet.
(b) Top view of the truncated corner cube relative to that of the
triangular pyramid corner cube. (c), (d) Linear dimensions of (c)
top view and (d) the cross-section view.
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�cos ϕr sin θr; sin ϕr sin θr;− cos θr�

� 1
nc

�
cos ϕin sin θin; sin ϕin sin θin;

−

��������������������������������
n2

− �sin θin�2
q �

: (7c)

For the triangular pyramid corner cube, the inci-
dence angle of illumination that offers the maximum
effective retroreflection area can be calculated by the
formula developed in Ref. [11]. The ray vector of the
maximum effective retroreflection is given by

" cos ϕr sin θr
sin ϕr sin θr

− cos θr

#
� 1���������������������������

x20 � y20 � z20

q M

"
−x0
−y0
−z0

#
; (8a)

where M and its components are given, respectively,
by

M �
2
4 0 1 0
−1 0 0
0 0 1

3
5

×

2
4 cos θs cos ϕs cos θs sin ϕs − sin θs

− sin ϕs cos ϕs 0
sin θs cos ϕs sin θs sin ϕs cos θs

3
5;
(8b)

cos θs � 1∕z0 � 0.7061; (8c)

sin θs �
���������������������������������������
�1∕x0�2 � �1∕yo�2

q
� 0.7081; (8d)

cos ϕs � �1∕x0�∕ sin θs � 0.7071; (8e)

sin ϕs � �1∕y0�∕ sin θs � 0.7071: (8f)

From Eq. (8a), cos θr, sin θr, cos ϕr, and sin ϕr are
obtained as 0.9495, 0.3138, 0, and 1, respectively. For
a refractive index of nc � 1.55 (conventional glass,
NBK7 in ZEMAX), the optimal incident and azimu-
thal angles for the maximum effective retroreflection
area are estimated to be, respectively, from Eq. (7c),

θin � asin�n sin θr� � 29.1078 �deg�; (8g)

ϕin � 90 �deg�: (8h)

In Fig. 2(b), the horizontal and vertical sizes of the
truncated corner cube are represented by x �
2.8245m∕�m� n� and y � 2.0n∕�m� n�, respectively.
From the measured ratio, we obtain the equation

x�101.98�∶y�172.45� � 2.8245m∶2.0n: (9)

Consequently, we have obtained the truncation
ratio, m∕n � 0.385.

3. Estimation of the Effective Retroreflection Area

In general, the effective retroreflection area of a tri-
angular pyramid corner cube varies according to the
direction of illumination. Thus, by changing the tilt
angle of the corner cube, we can design an optimal
corner cube structure with a theoretical maximum
retroreflection efficiency of 68% for any given illumi-
nation direction.

It is expected that a truncated corner cube will
have near 100% retroreflection efficiency. However,
to achieve this goal, the traveling paths of the optical
rays that undergo successful retroreflection should
be localized in the finite effective volume inside
the corner cube structure and thus not affected by
the truncation. In this section, the effective retrore-
flection areas of the truncated corner cubes are ana-
lyzed, and, as a consequence, it is demonstrated that
near-perfect retroreflection can be achieved with a
truncated corner cube.

As defined in Section 2, the entrance facet of a
truncated corner cube varies with design factors such
as the truncation ratiom∕n and the tilt angle ρ. For a
triangular pyramid corner cube, retroreflection oc-
curs when the ray is reflected three times at the
orthogonal facets of the perfect corner cube. If the
necessary condition of triple orthogonal reflections
inside the structure is not satisfied, rays cannot be
accurately retroreflected, and they become stray
rays. Similarly, the sidewalls of a truncated corner
cube can also generate stray rays; however, the paths
of these rays are more complicated than those of the
triangular pyramid corner cube. Estimation of the ef-
fective retroreflection area is not easy due to the
interference and mixing of stray rays; therefore,
the separation of the target retroreflected rays from
any stray rays is necessary.

The simulation setup in ZEMAX for the analysis of
the truncated corner cube is shown in Fig 3. The
truncated corner cube is placed on the optical axis.
A point light source is placed a distance away from
the truncated corner cube. The rays emitted from
the light source were tuned to diverge slightly to

Fig. 3. ZEMAX simulation setup for the analysis of the retrore-
flection of a truncated corner cube. The 4-f system is composed of
two thin lenses with focal length 1100 mm, and Detector 6 is lo-
cated at a distance of 4400 mm from the truncated corner cube.
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cover the entrance facet of the truncated corner cube
for efficient simulation. Since the truncated corner
cube is dielectric, both reflection and transmission
take place, but only reflected rays require measure-
ment. As mentioned, the reflected rays are a mixture
of retroreflected and stray rays. Therefore, a 4-f im-
aging system [15] is installed to filter out the stray
components and accurately measure the effective
retroreflection area as shown in Fig. 3. When the
rays from the point source meet the truncated corner
cube, the reflected rays travel in the reverse direction
of incidence. On their path to the optical detectors, a
half-mirror guides those reflected rays to pass
through the 4-f imaging system. During propagation,
the stray rays with nonparaxial directions are re-
jected via the vignetting effect. The optical intensity
distribution taken in Detector 6 is equivalent to the
effective retroreflection area of the truncated corner
cube without stray light interference.

In the analysis, the stray rays are measured se-
quentially using five unidirectional detectors num-
bered from 1 to 5 and located with 0.5 mm
intervals starting from 1 mm in front of the trun-
cated corner cube, enabling the propagation of stray
rays to be monitored. Figure 4 shows the simulation
results for the stray light. In this simulation, the
truncation ratio and the incidence angle are set to
m∕n � 1.3 and 25°, respectively. The optical inten-
sity distributions measured by Detectors 1–5 are pre-
sented in Figs. 4(a)–4(e), respectively. The entrance
facet area is indicated by the white rectangle. In-
specting Figs. 4(a)–4(e), two distinguished light com-
ponents are observed. One is a light pattern that does
not vary with detector position, and the other is a
light pattern that varies widely. These two patterns
are considered the retroreflected and stray light
components, respectively. We succeed in the selective
imaging of the retroreflection effective area by

filtering out the stray rays generated by the side-
walls of the truncated corner cube. The light distri-
bution obtained through the 4-f system is shown in
Fig. 4(f). The 4-f system shown in Fig. 3 filters the
stray light and selectively images the effective retro-
reflection area on Detector 6. The effective retrore-
flection area is extended within the entrance facet
aperture, but does not seem to completely fill the
aperture. In this case, the effective retroreflection ef-
ficiency, RA, is estimated to be RA � 71.51%. As can
be seen in Fig. 4, the simulation setup of Fig. 3 offers
an analysis tool for the effective retroreflection area
of truncated corner cubes.

Following this, a number of other truncated corner
cubes require testing in order to find an optimal
structure with near 100% retroreflection efficiency.
Sixteen models are prepared with different trunca-
tion ratios that vary from m∕n � 0.1 to m∕n �
1.6, with a variation interval of Δ�m∕n� � 0.1.
Figures 5(a)–5(p) present the measured effective ret-
roreflection areas of these structures.

The incidence angle of illumination is set to 4°, and
the tilt angle of the corner cube ρ is set to 2.286°.
When m increases beyond m∕n � 1.6, the intersec-
tion point for W12 and the z axis crosses the origin
point. Thus, in the analysis, m is limited to 1.6. As
a consequence, from the results displayed in Fig. 5,
the effective retroreflection efficiency that is closest
to 100% occurs when the ratio m∕n is 0.4.

For a given triangular pyramid corner cube with a
specified tilt angle ρ, the retroreflection efficiency of

Fig. 4. Optical intensity patterns of the reflected rays generated
by oblique illumination with incidence angle 25° on a truncated
corner cube with the truncation ratiom∕n � 1.3. (d)–(f) Optical in-
tensity patterns observed at the detector planes: (a) Detector 1;
(b) Detector 2; (c) Detector 3; (d) Detector 4; (e) Detector 5; and
(f) Detector 6.

Fig. 5. Effective retroreflection areas of the truncated corner
cubes with various truncation ratios: (a) m∕n � 0.1;
(b) m∕n � 0.2; (c) m∕n � 0.3; (d) m∕n � 0.4; (e) m∕n � 0.5;
(f) m∕n � 0.6; (g) m∕n � 0.7; (h) m∕n � 0.8; (i) m∕n � 0.9;
(j) m∕n � 1.0; (k) m∕n � 1.1; (l) m∕n � 1.2; (m) m∕n � 1.3;
(n) m∕n � 1.4; (o) m∕n � 1.5; and (p) m∕n � 1.6.
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the truncated corner cube can vary with incidence
angle and truncation ratio. Figure 6 plots the effec-
tive retroreflection efficiency as a function of the in-
cidence angle and the truncation ratio with the same
structure as analyzed in Fig. 5. The incidence angle
and the truncation ratio are scanned from −4° to 30°
and from 0.1 to 1.6, respectively, to find the condi-
tions of the highest effective retroreflection effi-
ciency. From this, it is shown that an effective
retroreflection efficiency of 99.7% is achieved at
the ratio of m/n 0.3 and an incidence angle of −2°.

In addition, the effective retroreflection efficiency
of the truncated corner cube structure produced by
3M Co. that is analyzed in Section 2 is analyzed here
using the devised analysis setup. Variation in retro-
reflection efficiency according to incidence angle is
plotted in Fig. 7. The retroreflection efficiency of
the truncated corner cube is analyzed for incidence
angles from −88° to 88°. The maximum retroreflec-
tion efficiency, 97.57%, is observed at an incidence
angle of 0°, i.e., normal incidence. The graph shows
the sharp variation in retroreflection efficiency
around this optimal point.

The tolerance of the incidence angle around the
normal incidence seems to be relatively small. It is
also furthermore noteworthy that the optimal

incidence angle for the truncated corner cube is 0°
compared to the optimal incidence angle of the
triangular pyramid corner cube of about 29.11°
[see Eq. (8g)]. The truncation operation thus changes
the optimal incidence angle.

4. Retroreflection of Truncated Corner Cube Sheets

In practice, identical truncated corner cubes are
arranged to a sheet as an array [16–20]. It would
be expected that optical interference across the inter-
faces of adjacent truncated corner cubes could
change the effective retroreflection area of each indi-
vidual truncated corner cube.

To check whether the arrangement influences the
retroreflection efficiency of an individual truncated
corner cube in the sheet to be reduced from that of
the single unit truncated corner cube, we perform
ZEMAX simulation of 10 × 10 arrays for two different
truncated corner cube structures withm∕n � 0.4 and
m∕n � 1. The original triangular pyramid corner
cube from which the truncated corner cubes are
formed has a tilt angle of 2.286°, which is identical
to the structure analyzed in Fig. 5. The effective ret-
roreflection areas of the truncated corner cube sheets
are presented in Figs. 8(c) and 8(f) for comparison.
The first sheet structure shows an effective retrore-
flection efficiency of about 98.9%, meaning that most
of its incidence area contributes to retroreflection. In
other words, retroreflection efficiency is preserved
even within an array formation. The effective area

Fig. 6. Effective retroreflection efficiency variation for incidence
angle and truncation ratio.

Fig. 7. Analysis of retroreflection efficiency of the 3M truncated
corner cube structure with tilt angle � 9.6556° and truncation
ratio m∕n � 0.385. The highest retroreflection efficiency (RA%)
is obtained at the incidence angle of 0°.

Fig. 8. Effective retroreflection areas of the corner cube sheets
with (a) optimal units (m∕n � 0.4) and (b) nonoptimal units
(m∕n � 1). The left column shows the perspective view of the trun-
cated corner cube and its effective retroreflective area. In the right
column, the effective retroreflective areas of the sheets are
presented.
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of the truncated corner cube sheet with the trunca-
tion ratio m∕n � 1 is shown in Fig. 8(f). The array,
which consists of individual truncated corner cubes
with 68.9% efficiency, offers a 10 × 10 periodic pat-
tern of the same retroreflection efficiency. The analy-
sis confirms that the periodic arrangement of
truncated corner cubes into arrays preserves the
near-perfect retroreflection property of a single trun-
cated corner cube unit. In the periodic arrangement;
inter-unit interference does not affect the total retro-
reflection properties. It supports our argument that
the internal ray paths for retroreflection are local-
ized in a finite volume for each truncated corner cube
structure.

5. Conclusion

In conclusion, we have investigated the retroreflec-
tion characteristics of truncated corner cubes with
geometrical analysis and ZEMAX simulation and pre-
sented an optimal truncated corner cube structure
with near-perfect retroreflection efficiency. It is re-
vealed that the selected commercial truncated corner
cube has near-perfect retroreflection efficiency at
normal incidence. It is inferred that the near-perfect
retroreflection efficiency is due to the localization
properties of the internal ray paths within the trun-
cated corner cube. Truncated corner cube structures
with near-perfect retroreflection efficiency can be
used for high-performance premium optical sheet
products for traffic signage and safety applications
as well as various engineering applications.

This work was supported by a Korean University
grant.
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