
Accelerated synthesis algorithm of polygon 
computer-generated holograms 

Dajeong Im,1 Jaebum Cho,2 Joonku Hahn,3 Byoungho Lee,2 and Hwi Kim1,* 
1Department of Electronics and Information Engineering, Korea University, 2511 Sejong-ro, Sejong 339-700, South 

Korea 
2School of Electrical Engineering, Seoul National University, Gwanak-Gu Gwanakro 1, Seoul 151-744, South Korea 
3School of Electronics Engineering, Kyungpook National University, 1370 Buk-Gu, Sankyuk-Dong, Daegu 702-701, 

South Korea 
*hwikim@korea.ac.kr 

Abstract: For the real-time computation of computer-generated holograms 
(CGHs), various accelerated algorithms have been actively investigated. 
This paper proposes a novel concept of sparse computation of polygon 
CGH, which is inspired by an observation of the sparsity in the angular 
spectrum of a unit triangular polygon and present the accelerated algorithm 
using the intrinsic sparsity in the polygon CGH pattern for the enhancement 
of computational efficiency effectively. It is shown with numerical results 
that computation efficiency can be greatly improved without degrading the 
quality of holographic image. 
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1. Introduction 

The recent increase in public interest in holographic three-dimensional (3D) displays is 
attributable to their promising possibility of unprecedented 3D image quality and the delivery 
of natural 3D cues without the problems commonly associated with commercial stereoscopic 
3D displays, such as accommodation-vergence conflict, eye strain, and fatigue [1, 2]. In 
principle, the holographic 3D display is therefore the ultimate form of 3D display, but several 
technological challenges remain to be solved in order to develop commercializable products 
and achieve commercial success. Significant research efforts have been made to overcome 
these technological challenges in recent years. One hardware challenge is the development of 
spatial light modulators (SLMs) with wavelength-scale pixels. Several studies have actively 
pursued, wavelength-scale SLMs based on novel technologies such as nanoelectromechanical 
systems (NEMS) [3], spin transfer switching magneto-optical (STS-MO) devices [4] and the 
active thermo-optic phase tuning [5] in addition to advanced liquid crystal (LC) SLMs [6, 7]. 
The development of efficient computational algorithms for the seamless real-time generation 
of large-scale photorealistic CGHs is a software challenge. In particular, recent research in 
this area has tended to focus on computational enhancement using parallel computing 
technology based on specific parallel computing hardware modules such as graphic 
processing units (GPUs) and parallel computing architectures [8–11]. More fundamental 
innovations in mathematical modeling for computational efficiency enhancement are, 
however, relatively rare, although some theoretical studies to improve the computational 
efficiency of the polygon CGH were reported in some previous papers [12–14]. 

In this paper, we propose a simple and effective method for the enhancement of the 
computational efficiency of the polygon CGH synthesis algorithm [15–20]. The idea for this 
was obtained from the observation that the two-dimensional (2D) angular spectrum profile of 
a triangular unit, i.e. the elementary unit of the polygon CGH, is inherently sparse. In other 
words, very large percentage of the angular spectrum domain area is filled with negligibly 
small values that can be approximated to zero, while the angular spectrum values in only 
small rest of the area determine the whole angular spectrum of the triangular unit. The 
efficient use of this sparsity in polygon CGH computation is expected to allow for increased 
computational efficiency. The proposed algorithm is not a parallel processing algorithm based 
on conventional mathematical formulas, but rather a novel acceleration algorithm with 
mathematically improved features that enhance its effectiveness even for single-computing-
core platforms. Of course, extending the proposed acceleration algorithm to accelerated 
parallel processing frameworks is straightforward, so it is expected to lead to unprecedented 
computational acceleration in the polygon CGH generation. 

In this study, the validity and effectiveness of the proposed algorithm will be tested with 
numerical simulations. In Section 2, the proposed algorithm is described and the analysis of 
the computation time enhancement is presented. In Section 3, the numerical reconstruction of 
the polygon CGH of a complex 3D object is presented to validate our approach and the 
possible influence on image reconstruction quality is analyzed, followed by concluding 
remarks. 

2. Accelerated synthesis algorithm for polygon computer-generated holograms 

In order to describe the proposed algorithm, a brief review of the numerical framework of 
polygon CGH synthesis algorithms is needed. In the polygon CGH method, 3D objects are 
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depicted by triangular meshes. The light field distribution of a single triangle facet is an 
elementary unit of full 3D light field distribution, and the holographic 3D light field is 
synthesized by the total superposition of the elementary light fields as shown in Fig. 1. Here a 
triangle-meshed 3D lobster is chosen as an example target 3D object. 

Target 3D object

CGH domain

+ +

Object space

+

+ + +

Light field elements of unit triangular facets

Sparse angular spectrum elements

(b)

(a)

 

Fig. 1. Construction of a holographic 3D image and its CGH pattern by the superposition of (a) 
the light field elements of unit triangular facets and (b) the elementary sparse angular 
spectrums of these facets 

In Fig. 2(a), a unit triangular facet in a global coordinate system is shown. On the k th 
triangular facet of the polygon object, its local coordinate system is depicted, where the center 
of mass and the normal vector of the triangle facet are assumed to be ( ), ,k k k kc x y z=  and 

( )cos sin ,sin sin ,cosk k k k k kφ θ φ θ θ=n , respectively, and the center of mass is set to the origin 

of the local coordinate system. The spatial coordinates ( ), ,x y z′ ′ ′  in the local coordinate 

system and ( ), ,x y z  in the global coordinate system are related by the rotational transform, 

 

cos cos cos sin sin

sin cos 0 .

sin cos sin sin cos

k k k k k k

k k k

k k k k k k

x x x

y y y

z z z

θ φ θ φ θ
φ φ

θ φ θ φ θ

′ − −    
    ′ = − −    
    ′ −    

 (1) 

In the local coordinate system, the normal vector kn  is equal to the z′  axis, so the triangular 

facet is placed on the x y′ ′  plane. 
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Fig. 2. Elementary units of the polygon CGH synthesis algorithm: (a) unit triangular facet and 
(b) its angular spectrum profile 

As detailed in ref [15], the light field distribution in the global coordinate system, 

( ), ,kW x y z , is described by the angular spectrum representation, 

 ( ) ( ) ( ),, , , exp 2 ,k G kW x y z A j x y z d dα β π α β γ α β
∞ ∞

−∞ −∞
= + +     (2) 

where ( ),α β  are the spatial frequency and γ  is given by 2 2 21/γ λ α β= − − . λ  is the 

wavelength of light in free space. The angular spectrum in the global coordinate system 

( ), ,G kA α β  is formulated by 
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 ′× + − + − + −   

 (3) 

where ( ) ( )( ),k kα β′ ′  and kη  are the spatial frequency in the local coordinate system and the 

complex amplitude. ( )kγ ′  is given by ( ) ( ) ( )2 221/k k kγ λ α β′ ′ ′= − − . ( ),kA α β′ ′  and ( )H ⋅  

are the local coordinate angular spectrum of the k th triangular facet and the Heaviside unit 

step function [15]. The spatial frequency variables ( ),α β′ ′  in the local coordinate system and 

( ),α β  in the global coordinate system are related by the same rotation transform as in Eq. 

(4). The spatial frequency ( ),α β  in the global coordinate system is given by the matrix 

equation 

#228323 - $15.00 USD Received 20 Nov 2014; revised 15 Jan 2015; accepted 23 Jan 2015; published 30 Jan 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.002863 | OPTICS EXPRESS 2866 



 

cos cos sin cos sin

sin cos cos sin sin .

sin 0 cos

k k k k k

k k k k k

k k

α θ φ φ φ θ α
β φ θ φ φ θ β
γ θ θ γ

′−    
    ′=    
    ′−    

 (4) 

Figure 2(b) shows the angular spectrum profile in the global spatial frequency domain 

( ), ,G kA α β . The angular spectrum profile consists of a central lobe and six curved branches. 

The main idea for achieving the computational acceleration is that the angular spectrum 
profile can be approximated to a sparse pattern by excluding the small angular spectrum 
values smaller than a threshold set near to zero in the calculation. For this, is set the region of 
interest (ROI) that indicates the area with angular spectrum values used in the CGH 
calculation. In the conventional computation schemes of polygon CGH, this sparse property 
within the angular spectrum has not been perceived. However, because significant proportion 
of computation time is spent on the calculation of near zero values in the angular spectrum, it 
is expected that the selective calculation of the angular spectrum in this ROI, where non-
negligible values are compactly distributed, can greatly save computation time. The ROI is 
essential for accelerating the CGH synthesis algorithm. Our finding is that the ROI can be 
very efficiently constructed via a simple mathematical formulation. 

Let us consider the triangular facet in the local coordinate system in Fig. 3(a) with the 
three apex points of the triangle 1 2 3P P PΔ , where ( )1 1 1,P x y′ ′= , ( )2 2 2,P x y′ ′=  and ( )3 3 3,P x y′ ′= . 

The perpendicular bisectors of the triangle, 12t′ , 23t′ , and 31t′  are obtained, respectively, by 

 ( ) ( ) ( )( )12 12 12 2 1 2 1: , , ,t x y y y x x s′ ′ ′ ′ ′ ′ ′= − − −  (5a) 

 ( ) ( ) ( )( )23 23 23 3 2 3 2: , , ,t x y y y x x s′ ′ ′ ′ ′ ′ ′= − − −  (5b) 

 ( ) ( ) ( )( )31 31 31 3 1 3 1: , , .t x y y y x x s′ ′ ′ ′ ′ ′ ′= − − −  (5c) 

(a) ( ),k x y′ ′Δ
1P

2P

3P

(b) ( ),kA α β′ ′ ( ), ,G kA α β(c)

( )0,0

12t′

23t′

31t′

12l′

23l′

31l′

( )0 0,α β′ ′

12l

23l

31l ( )0 0,α β

 

Fig. 3. (a) A unit triangle facet in a local coordinate system and its angular spectrum profile in 
(b) the local coordinate system and (c) in the global coordinate system 

Here, a finding is that the bisectors of the triangle are exactly matched to the angular 
spectrum profile with the center ( )0 0,α β′ ′  as shown in Fig. 3(b). The line indicators of the 

ROI in the spatial frequency domain ( -α β′ ′  plane) corresponding to 12t′ , 23t′ , and 31t′  are 

denoted by 12l′ , 23l′ , and 31l′ , respectively, 

 ( ) ( ) ( ) ( )12 12 12 12 12 0 0: , / , / , ,l x x y yα β α β α β′ ′ ′ ′ ′ ′ ′= Δ Δ Δ Δ +    (6a) 

 ( ) ( ) ( ) ( )23 23 23 23 23 0 0: , / , / , ,l x x y yα β α β α β′ ′ ′ ′ ′ ′ ′= Δ Δ Δ Δ +    (6b) 
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 ( ) ( ) ( ) ( )31 31 31 31 31 0 0: , / , / , ,l x y x x y yα β α β′ ′ ′ ′ ′ ′ ′= Δ Δ Δ Δ +    (6c) 

where xΔ , yΔ , αΔ , and βΔ  are the differential lengths in the spatial domain and the spatial 
frequency domain, respectively. 

The resultant ROI indicators, 12l , 23l , and 31l  in the global coordinate system ( ),α β  are 

plotted in Fig. 3(c). The nonlinear transformation of Eq. (4) turns the straight lines 12l′ , 23l′ , 

and 31l′  into the curves 12l , 23l , and 31l , which are seen to exactly depict the ROI in the global 

coordinate. However, because the indicators, 12l , 23l , and 31l  are the traces of the central 
point of the ROI, we need to further extend the effective ROI area to cover a range of area 
around the curved indicator. The necessary ROI construction process, in order to construct an 
ROI with a finite area, is performed by the convolution of the sampled ROI indicator 

( ),pA α β , displayed in Fig. 4(a) with the circular function ( ),Circ α β , seen in Fig. 4(b), in 

the spatial frequency domain. This is represented as 

 ( ) ( )( ) ( )( )1, , , .m pA FT FT A FT Circα β α β α β−  = ⋅   (7) 

where FT means the Fourier transform. Figure 4(c) shows the convolution result of the 
indicator and the circular function with coarse sampling. The area of the ROI can be adjusted 
with the radius of the circular function. 

(a) (b) ( ),mA α β( ),pA α β ( ),Circ α β (c)

 

Fig. 4. Construction of the computational ROI: (a) sampled indicator, (b) circular function and 
(c) ROI 

In Fig. 5, the reconstructed images of the sparse angular spectrum and the conventional 
dense angular spectrum are compared. The sparsity, i.e., the ratio of the ROI area to the whole 
area of the angular spectrum domain, is approximately 5.69% for the sparse angular spectrum. 
Figures 5(c) and 5(d) show the reconstruction results of the tilted triangular facet image from 
which no perceptible discrimination is observed. Consequently, the sparse angular spectrum 
obtained by a simple cut-off masking process where only a small percentage in the entire 
angular spectrum area is filled with non-zero data and the rest of the area that is approximated 
to be zero does not greatly influence the reconstructed image but can significantly reduce 
computation. 

3. Numerical reconstruction of polygon CGHs 

To verify the proposed method, the numerical simulation of CGH synthesis and 
reconstruction is performed. In order to clear and accurate holographic 3D images, the 
polygon CGHs have been calculated using the phase regularization technique [16]. The 
simulation setup is illustrated with parameter specifications in Fig. 6. The optical system 
schematic of the eye observation of a holographic 3D image is shown. The CGH 
plane ( ),CGH CGHx y , the eye lens plane ( ),u v , and the retina plane ( ),retina retinax y  are defined 
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as shown in Fig. 6. The field lens with a focal length of F  is placed behind of the CGH plane 
and then the viewing window is set at the position distant from the CGH plane by F  [16]. The 
distance between the eye lens and the retina plane is indicated by eyed . The holographic 

image is imaged into the retina plane through the eye lens. 

 

 

Non-zero points 5.6889% Non-zero points 100%

(a) (b)

(c) (d)

 

Fig. 5. (a) Sparse and (b) dense angular spectrums and their reconstruction images of (c) the 
sparse and (d) dense angular spectrums 

CGH plane

Retina plane

Eye lens plane CGHx

retinax

CGHy
retinay

u

v

z

F

eyed
 

Fig. 6. Simulation setup. The size of CGH is 1921 × 1921 and the distance between the CGH 
plane and the eye lens plane, F, is set to 800 mm and that between the eye lens and the retina 
plane, deye, is 25mm. The pixel-pitch of the CGH and the wavelength λ  are set to 73µm and 
532nm, respectively.. The target object is composed of 10255 triangle facets and is smaller 
than 45 × 45 × 45mm3. The target object is located near the CGH plane. 

The numerically reconstructed holographic 3D images of the triangle-meshed 3D lobster 
for various sparsity levels are compared in Fig. 7. By varying the sparsity level, we 
investigate the quality of the reconstructed holographic images and the computation times. In 
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Figs. 7(a), 7(b), and 7(c), the ROI is set to 1.2%, 4.0% and 100% of total area, respectively. 
For the ROI of 1.2%, only a minor difference in the object surface is discernible from the full-
calculation result. After expanding the ROI to that of 4.0%, it is seen that there is very little 
difference between the images displayed in Figs. 7(b) and 7(c). On average, it took 0.0569 
seconds and 0.2052 seconds per triangle facet to calculate the ROIs of 1.2% and 4.0%, 
respectively, while, the conventional full-calculation required 5.1562 seconds. Thus, the 
computation times for the first and second cases are approximately 91 times and 25 times 
faster than conventional calculation, without a significant image quality degradation. This 
comparison of computation times supports our proposal. The lobster object used in the 
simulation example is a very general shape object. From this, we expect that even 2% ROI 
will produce quite good holographic images for other 3D objects. In Fig. 8(a), the total 
computation times according to the sparsity of the ROI region is presented. The red line 
represents the total computation time for the full area computation, set as the upper limit for 
the computation time. The blue line in this figure indicates the computation time of the sparse 
polygon CGH, which shows that the computation time increases proportionally with the ROI 
area. This linear relationship between the computation region and the computations speed is 
as expected. The computation time of the blue line includes both the ROI identification 
process and the angular spectrum computation, which was performed by the convolution 
process of the sampled ROI indicator and the circular function with a sizeable radius. The 
black line is the estimated computing time after the ROI identification time has been 
removed. In Fig. 8(b), we analyze in more detail the cause of the time consumption in the 
ROI build-up stage. 

(a) (b) (c)

1.2014% 4.0222% 100%

 

Fig. 7. The reconstructed images and CGH patterns for the ROIs with various sparsity of (a) 
1.2014%, (b) 4.0222% and (c) 100%. The average computation times of a unit triangle in the 
CGH patterns are estimated to (a) 0.0569, (b) 0.2052 and (c) 5.1562 (seconds), respectively, 
for those cases. 
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Fig. 8. (a) Computation time versus the ROI computation region (%) and (b) the computing 
time used up in the ROI build-up stage. 

The ROI build-up process is analyzed in four steps. As explained in Section 2, the first 
step calculates the bisectors of the triangular facet in the local coordinate system and maps the 
bisectors to the ROI indicators in the local angular spectrum domain. In the second step, the 
ROI indicators are translated from the local to the global coordinate system. The third step is 
to construct the ROI so that it maintain a constant thickness using the convolution method. In 
the fourth step, the angular spectrum is calculated in the constructed ROI region. As shown in 
Fig. 8(b), the first, second and fourth steps are not time-consuming. The time-consuming step 
is the third one; it is approximately ten times slower than the other steps because of the 
convolution operation. Since the time required in the third step is determined by the 
resolution, the computational efficiency cannot improve on this. 

4. Conclusion 

In conclusion, we have proposed an accelerated polygon CGH algorithm using the inherent 
sparisity in the polygon CGH synthesis that allows the effective size reduction of the 
computation domain. The proposed method was verified through the numerical simulation of 
the target 3D object showing approximately 90-times higher computation efficiency 
enhancement without a loss of quality in the reconstructed image. We believe that the 
performance of the polygon CGH synthesis algorithm will be further improved if the 
proposed algorithm is combined within parallel processing. 
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