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1. INTRODUCTION

Large-scale numerical analysis of Maxwell’s equations is
inevitable in modern nano-optics and nanophotonics.
There are many branches of methodologies for numeri-
cally solving Maxwell’s equations. For large-scale analy-
ses, the exploitation of parallelism is commonly important
in these methodologies. Thus novel algorithms are being
actively researched to refine and improve existing meth-
odologies to be appropriate for the parallel supercomput-
ing environment.

The Fourier modal method (FMM) is a well-known ac-
curate and efficient electromagnetic analysis method in
the fields of nano-optics and nanophotonics. In the FMM,
whole space, including target structures, is modeled by
multilayer structures. The electromagnetic eigenmodes in
each layer are separately characterized. In the FMM, ba-
sically, electromagnetic vector fields and structure pro-
files, i.e., permittivity and permeability, are represented
in the Fourier domain (spatial-frequency domain or recip-
rocal space of the spatial domain), where the standard dif-
ferential equation form of Maxwell’s equations in the spa-
tial domain is converted into an equivalent algebraic
matrix eigenvalue equation of the Fourier coefficients of
the electromagnetic fields. The total electromagnetic field
distributions within as well as outside multilayer struc-
tures are represented by the linear combination of the
eigenmodes with their own coupling coefficients. Coupling
coefficients are determined to satisfy the tangential field
continuation conditions on the boundaries between adja-
cent layers, which can be obtained by use of the
scattering-matrix method (SMM) of various forms [1-4].
Additional physical information such as power flow, cou-
pling efficiency, and separate visualization of evanescent
and nonevanescent field distributions can be extracted by
proper data processing of the obtained modal field infor-
mation provided by the FMM. We can obtain physical in-
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tuitions on the interactions between the electromagnetic
fields and structures and also exploit structural advan-
tages of the SMM for efficient functional block-based
analysis. This modal analysis is the most remarkable fea-
ture of the FMM. Within this general framework of the
FMM, the possible parallelism for the practical parallel
computation can be found at two points. The first paral-
lelism lies in solving large matrix equations using the
well-developed up-to-date parallel algebra libraries such
as SCALAPACK. As the transversal direction supercell peri-
ods (usually x and y-direction periods) in the FMM in-
crease, the required number of Fourier harmonics in-
creases rapidly. As a result, the total size of the
eigenvalue equation becomes so large that the size of the
FMM cannot be manageable in a single personal com-
puter. Thus using parallel linear algebra libraries such as
SCALAPACK is essential to the FMM for structures having
large transversal supercell periods. This kind of parallel
matrix computation has already been established in the
supercomputing field.

In addition to this matrix parallelism, a different par-
allelism is necessary for structures having large longitu-
dinal direction dimensions. As the longitudinal extent of a
target structure becomes large, more layers are needed in
the multilayer modeling of the structure. In this case, the
possible parallelism can be found in the computational
structure of the SMM. The SMM has its own parallelism
in the associative relation that exists in the Redheffer
star product of the scattering matrix (S-matrix). This as-
sociative relation of the Redheffer star product is ex-
ploited for the parallel computing of the FMM with the
multilayer-based structure modeling. However, we note
that the potential parallelism has not been fully exploited
in the conventional scheme of the SMM in that the proper
parallel algorithm for obtaining coupling coefficients has
not been developed. In [4], it is pointed out that the main
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computational limitation of the conventional SMM is in
the calculation of coupling coefficients of the eigenmodes.

In this paper, the investigation of this second parallel-
ism is our focus. A refined and extended formulation of
the SMM is proposed for realizing efficient full parallel
computation of the electromagnetic field distributions
within multilayer structures. The Redheffer star product
relation in the conventional SMM is defined as the recur-
sive relation between the components of the S-matrix. In
this paper, it is shown that a similar relation between the
coupling coefficients of eigenmodes exists. The Redheffer
star product relation is extended to the coupling coeffi-
cients of eigenmodes. The associative relation of the ex-
tended Redheffer star product is a key factor for the par-
allel computation of the electromagnetic field
distributions within multilayer structures. This extended
Redheffer star product relation is the main result of this
paper. This scheme is so general that it can be widely ap-
plied to FMMs such as the rigorous coupled-wave analy-
sis (RCWA) [5-9] and the pseudo-Fourier modal analysis
method [10,11].

In this paper, the proposed SMM is described in the
RCWA framework. The RCWA is the most popular and
well-established methods among the FMMs. For proving
the validity of the proposed SMM, the field distributions
and coupling coefficients obtained by the enhanced trans-
mittance matrix method (ETMM) [12] and the proposed
SMM for an exemplary structure are compared. The
ETMM is a well-known accurate and stable boundary-
matching method, which is a serial algorithm that cannot
be parallelized. It is shown that the numerical result of
the SMM does highly agree with that of the ETMM.

This paper is organized as follows. In Section 2, the
proposed SMM is described in the RCWA framework. The
Redheffer star product relation of the coupling coefficients
for the parallel computation of electromagnetic field dis-
tributions within multilayer structures is addressed. In
Section 3, the advantages of the proposed SMM over the
conventional SMM are discussed. In particular, the func-
tional block-based FMM is presented as the most remark-
able advantage of the proposed SMM. In Section 4, nu-
merical results for verifying the proposed method are
presented. In Section 5, the conclusion and final remarks
are given.

2. EXTENDED SCATTERING-MATRIX
METHOD

In this section, the extended SMM having the additional
Redheffer star product relation of coupling coefficients of
eigenmodes is described in the RCWA framework [5-7].
The main objective of the proposed SMM is the efficient
parallel computation of the electromagnetic field distribu-
tions within multilayer structures.

Figure 1 shows a general multilayer structure with N
+2 layers and N+1 boundaries between adjacent layers.
In the RCWA, the staircase approximation is adopted in
the multilayer modeling, under which each layer has per-
mittivity and permeability profiles, being periodic in the
transverse x and y directions, but is homogeneous along
the longitudinal z direction normal to the boundaries. The
nth layer and nth boundary are denoted by L, and B,.
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The total structure is composed of the input region, the
multilayer body, and the output region. The multilayer
body is denoted by MM where the superscript (1,N) in-
dicates the first and last indices of layers composing the
multilayer body. The input and output regions surround-
ing the multilayer body are denoted by L, and Ly, re-
spectively, which are half-infinite structures that may be
a homogeneous space such as free space or an inhomoge-
neous space such as general waveguide structures.

In this paper, we conceptually distinguish two types of
S-matrix form for convenience. One is the S-matrix for
the characterization of the layer. The other is the
S-matrix for the characterization of the boundary. The de-
tailed meanings of these terms will be given in the follow-
ing paragraphs.

At first, the layer S-matrix is considered. We adopt the
mathematical induction for addressing general and com-
plete formalism. Before the formulation of the SMM is un-
folded, an understanding of the bidirectional character-
ization of a partial multilayer in the RCWA framework is
necessary. In Fig. 2, the bidirectional characterization of a
partial multilayer M"+™) composed of consecutive m
layers, L,—L, ., is illustrated, where the superscript
(n,n+m) indicates the first and last indices of layers com-
posing the partial multilayer M®"*™)_ We assume that
the partial multilayer M7+ is surrounded by a homo-
geneous and isotropic medium, i.e., free space, and the
thickness of the homogeneous medium is set to zero for
the domain decomposition [4]. The bidirectional charac-
terization of the partial multilayer M®"*™) ig referred to
in obtaining the reflected, transmitted, and internal field
distributions excited by two independent incident fields
propagating in the left-to-right direction and the right-to-
left direction, which are illustrated in Figs. 2(a) and 2(b),
respectively. In Fig. 2, the fields propagating along the
left-to-right direction and the right-to-left direction are
symbolized by the superscript arrow symbols — and «,
respectively. The meanings of the other conventions and
symbols seen in Fig. 2 are explained in the following para-
graphs.

Let us first consider the left-to-right directional charac-
terization of the partial multilayer M@+ In the
RCWA, a set of the discrete wave vector (k, o,k o,k o)

1.V
Multilayer M( )

~
()

1
=

L L

0
Input region

N+1

Output region

e o — )

=

=
&=
>
o]

Fig. 1. Multilayer structure for the RCWA.
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Fig. 2. Bidirectional characterization of a multilayer for obtaining the layer S-matrices: (a) left-to-right directional characterization, (b)

right-to-left directional characterization.

indicating the (s,¢)th diffraction channel (diffraction or-
der) is prepared, each component of which is defined, re-
spectively, by

21rs
kx,st = kx + Ax ’ (la)
2t
ky,Stzky+A_y’ (lb)
Q1r 2 1/2
kz,st = <<T> - (kx,st)2 - (ky,st)z) s (1c)

where \, A,, and A, denote wavelength, the x-direction
supercell period, and the y-direction supercell period, re-
spectively. k£, and k, are the x-direction wave-vector com-
ponent and the y-direction wave-vector component of the
Oth diffraction channel. The diffraction order indices, s
and ¢, are integers in the range of -P<s<P and -Q <t
<@, respectively. In this case, the total number of Fourier
harmonics used in the RCWA is (2P+1)(2Q+1).
Let us assume that an input plane wave given by

Ust = ("fﬁx,st +3_’lzy,st + %lzz,st)exp[j(kx,stx + ky,sty + kz,stz)]

(2a)

is incident on the left boundary B,,_; of the nth layer L,.
The plane wave of Eq. (2a) can be split into two indepen-

dent polarizations, ﬁst,(x) and Uy (), respectively,

- N - ux,sth,st
Ust,(x) =\ XUyt 2 Z
z,st

Xexplj(ky o + Ry oy + ks 512)], (2b)

- N - Zzy,stky,st
Ust,(y) =\ YUyt | T )2
kz,st

Xexplj(ky o + Ry oy + R 502)]. (2¢)

We can see that there are two independent diffraction
channels with the same wave vector. For the (s,#)th inci-
dent direction,(k, o,ky 55k, ), two independently polar-
ized input excitations of Eqs. (2b) and (2¢) can produce
the respective reflection and transmission fields. There-
fore, in the RCWA, the total number of the diffraction
channels (diffraction orders) is considered to be 2(2P+1)
X (2@ +1), which is the twice the number of the retained
Fourier harmonics.

For convenience, using the one-dimensional raw-
leading ordering, let the index pair (s,t) be equivalently
indicated by a single index f given in the range of 1<f
<2H, where H is set to H=(2P+1)(2Q +1). The relation-
ship between the index pair (s,¢) and the index f is de-
fined by

f=+P)2Q+1)+t+Q+1 forl<sf<H, (3a)

f=+P)2Q+1)+t+Q+H+1 for H+1<f<2H,

(3b)

through which we can extract the index pair (s,¢) from
the index f, using the above relationship. In addition, let
the index f'in the range of 1<f<H and the index f in the

range of H+1<f<2H be allocated to indicate ﬁst,(x) and
Uy, ), respectively. In other words, we take the relations

- o - IZ 5 tk ,St
- kz,st

Xexpljky o +ky oy +k, 2)] for 1<Sf<H,
(4a)
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e ux sth st
Up= | xtiy g + | ———
f qux,st kz,st 2

Xexplj(ky o + Ry oy + R 512)]
for H+1<f<2H. (4b)

Following the above indexing scheme, the electric field
distribution in the left homogeneous medium excited by
the single excitation of the fth diffraction channel, E;, f, is
represented by the superposition of the incident field, Uy,
and the reflected field as

Epp=Up+ X, @il 4 yrmiem) o gpnmem)
h

Xexpljky px + Ry py =k p2)]. (5a)

In the right homogeneous region, the transmitted electric
field ER ;is represented by

ERf E ( ';(cnh;t‘+m) +ytynh?+m) +Zt n, ;L‘+m))
Xexp[i(kx,hx + ky,hy + kz,h(z - ln,n+m))], (5b)

where the superscript (n,n+m) indicates the partial
multilayer M®@n+m)  and (éfc”h’?m), F;’f;:?m), éi”h}"fm) and
(fL"h’Fm) ffvnh?m), z"h?m)) denote the reflection coefficients
and the transmission coefficients, respectively, of the Ath
diffraction channel excited by an input excitation on the
fth diffraction channel. [, ,,,,, is the thickness of the par-
tial multilayer M®")  given by Lynem=dp+d i1
++++d,.m, where d, is the thickness of the kth layer.

On the other hand, let the electric and magnetic field
representations in the (n+#k)th layer L,,, of the partial
multilayer M@+ be denoted by EEZ:Z;'}’) and H EZ &;'}'ﬁ),
respectively, where the subscript f indicates the diffrac-

tion channel of the excitation source. In the RCWA,

E(n n+m) H(n n+m)

(nvk).f and (nvk).f take, respectively, the forms of

Flnnm) _ (montm) )
Bon =S, S (S +yS U
p=—P q=—Q

+2Smsm) (2)]explj(k, pgx + by pgy)],  (62)

(n,n+m) _ +m) (n,n+m)
Hiwy =J E E [xUEkafZ,qu(Z)+XU<Z+nk>$,qu
Hop=-P ¢q=-Q

X(z) +z (kaJ;ZILq 2)lexplj(ky pgx + ky pgy) 1.

(6b)

For simplicity, following the one-dimensional raw-leading
ordering defined in Eqgs. (3a) and (3b), Egs. (6a) and (6b)
read, respectively, as

(n,n+m) _ (n,n+ (n,n+m) (n,n+m)
EGinf = 2 (%S e nfZ) + YS vy ynf@) + 28 vy e nf2)]
=1

Xexplj(kypx + ky 1)1, (7a)
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H(n n+m) _

+m) (n,n+m)
(k) f = \/ E[x ekt @) YU 2)

+2U ™, (2) lexpljlky jx + ky )], (7b)

where the index pair (p,q) can be equivalently indicated
by the single index A given by

h=p+P)2Q+1)+q+Q+1
forlsh<sH=02P+1)(2Q +1) (7c)

and vector components S(Z +nk+m (2) and UEZ:Z;'Z)(Z) of the

electric and magnetic fields are given, respectively, by

Sinemiz) = EWW’” {elemsmr* explg™M (@ — 11 pap-1)]
+c$z:’k§’,;f expl- gy P -1y, (7d)
Uprimi(z) = 2 ViEBelmnmt explg ™z = 1y opo1)]

cisz*)g}' expl- ¢ e -1y, (Te)

where notation convention follows that of [4,5]. q”+k),

W;Z;k), and V(",;k) are the gth eigenvalue and the gth
eigenvectors of the electric field and the magnetic field,
respectively, and [ ,,;, is given by Iy ,,,=di+do+ - d .
It is noted in Egs. (7d) and (7e) that the positive coupling
coefficient and the negative coupling coefficient in the (n

+k)th layer L,,, are distinguished and denoted by

(n,n+m)+ (n,n+m)- .
(n+k).gf and Clnvh)gf respectively.

Let the column vectors of the reflection and transmis-
sion coefficients, f"(c”’"*m) and t:(c”’”*m), obtained with a spe-
cific input excitation on the fth diffraction channel be de-

fined by
~(n,n+m)
lrnem) _ [ry hf ! (8a)
f [;_(n n+m)] a
. [y ™1
t}(c’l’"*‘m) - ([tq(n,nwrz):l ’ (8b)
x,h

where the square brackets of F<”h'}+m) [*;”h'}m)], denote a

column vector with the dimensions of H X 1,

[Fi'r’t},tr;+m)] (,@nl?wn) *(nz?wn), . ”:;n#+m))t‘ (80)

Thus, the dimensions of ¥"*™ and £%"*™ are 2H X 1.
Collecting all r""*m and f(" wm) for f=1,2,--,2H, we
can define a reﬂectlon coefﬁc1ent matrix operator R(” n+m)

and a transmission coefficient matrix operator Tnn+m)
with the dimensions of (2H) X (2H) as, respectively,

Rwn+m) — (i-.(ln,n+m),i-,(2n,n+m)’ .

R, (9a)

ri\(n,n+m) — (i’;(ln,n+m)’f(2n,n+m)’ o ,i’;(21}.,1n+m)) . (9b)
Then, by applying the reflection coefficient matrix opera-
tor and transmission coefficient matrix operator to the in-
put vector iy containing the only single excitation on the
fth diffraction channel, we can obtain the reflection and
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transmission coefficient column vectors by the following
operations:

f,/gn,n+rrL) — ﬁ(n,"*'m)ﬁf’ (103)
E}(Cn,n+m) _ 'i‘(n’"”")ﬁf, (10b)

where uyis defined by ([, (8,7, [ty f0,,/])'. Here 8,,¢is the
Kronecker delta function. Now, we take the normalized
input vector, uy=[8,,], by setting u, ;=1 and u, ;/=1. Also,
(2H) X (2H) matrix operators of the coupling coefficients,

C;"(ZIZ;H and Ca”(;‘:z;) , are defined as
(n,n+m)+ _ ((n,n+m)+ (n,n+m)+ +m)+
Car,L(ZafZ; —(calf(2+lre)§,1rcarf<2+/):§,2’ e an(rrf#rer; on), (11a)
(n, )- _ (a1, )- L0, )- ( )
Cotnity =€ i1 Cainihyzs -+ Cainstrr)s (11b)
where cfln(::;;); and cfln(Z:,T))}Z are the column vectors of the

positive coupling coefficient C(Z :Z;g’)f and the negative cou-

(n,n+m)

pling coefficient Clurh) gf_, respectively, defined by

Coinimt =Lehiivg ) (11c)
(n n+m)— _ [ (n, n+m)—] (1 1d)
Cq J(n+k).f — (n+k),gf ’

and the subscript ¢ indicates the left-to-right directional
characterization. In a similar manner in Eqgs. (10a) and
(10b), the coupling coefficients induced by a single input
excitation on the fth diffraction channel are obtained as

(n,n+m)+ _ ~(n, n+m)+ =

Coinst)f = Cainsr) Up (11e)
(n,n+m)— _ C(n n+m)—= (llﬂ
Co,(n+h)f = Ya,(n+k) G
Next, let the (4H)X(2H) coupling coefficient matrix
C;"(Z:,T)) composed of the coupling coefficient matrix opera-
tors C;" Z:;S)J' and Cfln(z:;g) be defined as
C(n,n+m)+
(n,n+m) _ a,(n+k)
Car,t(rrlLJer; - <C(n,n+m)— . (12&)
a,(n+k)
Let the set of the coupling coefficient matrix, C((Z"(Z:Z;),
(n,n+m)
Ca (nnsm) be defined by
C(n n+m) {C(n ,n+m) C(n,n+m) (n n+m)} (12b)
a,(n,n+m) — a,(n) *“a,(n+l)> " a ,(n+m)

In addition, let the matrix operator U be defined, simply,
by the (2H) X (2H) identity matrix

o . 10
=[uy uy ... ugyl= 01 (13)

which can be thought as the input operator expressing all
possible input excitations. The matrix operators, R+,

Tnn+m) C(n(ZI,T)H, and C;" A )=, provide the complete in-
formatlon on the left-to-right directional characteristics of
the partial multilayer M""+m),

On the other hand, let us consider the right-to-left di-
rectional characterization of the partial multilayer
Mnn+m) In this case, the input field in the right homoge-

neous region is represented by
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dn,n+m))]-
(14a)

l7f= (xdxf+3_/12yf+ 2, explj(ky p + ky v — k, Az —

In the right homogeneous region, the electric field distri-
bution Eg  is represented by the superposition of the in-
cident field and the reflected field distributions as

~(n,n+m) ~(n, n+m))
hf

Epp=Ur+ 2 (a_cfgc’f,’lf +yr e 2y
h

Xexp[j(kx,hx + ky,hy + kz,h(z - dn,n+m))]~ (14b)
In the left homogeneous region, the transmitted electric
field is represented by

ELf 2 (xt‘,‘(n n+m) +y"3(/nhr;+m) +€ﬂ?ﬁr;+m))

Xexplj(ky px + Ry py — k. p2)]. (14c)

In the same way as in the case of the left-to-right direc-
tional characterization, we can define the matrix opera-

tors Unntm) Rnn+m) in.ntm) Cg)n(Z:Z;H and C;)n(Z:Z;)_ n

the right-to- left dlrectlonal characterlzatlon of the partlal

multilayer M®n+m)_ In the definitions of C™*™* and

b,(n+k)
CZH(Z:Z;)_, the subscript b indicates the right-to-left direc-

tional characterization. In practice, for the right-to-left di-
rectional characterization, we just have to reverse the op-
tic axis in the RCWA without making any changes in the
multilayer structure. However, considering that the optic
axis is reversed, we can define the (4H) X (2H) coupling

coefficient matrix Cé"(’;’:g) composed of the coupling coef-

ficient matrix operators Cg"(Z:Z;‘)J' and Cén(ZIZ;) , in con-
trast to the definition of C(n ‘v, in Eq. (12a), as
(n,n+m)—
(n’n+m) _ b,(n+k)
Cb,(n+k) - (C(n,n+m)+ : (153)
b,(n+k)
Then the set of the coupling coefficient matrix Czn(;‘:,':;) is
defined by
C(n n+m) {C(n n+m) C(n,n+m) (n n+m)} (15b)
b,(n,n+m) — b,(n) >¥b,(n+1) > b J(n+m)

In the proposed SMM scheme, the above-stated opera-
tors, fk(”””m), 'i‘(""”m), f{(”””m), and ’i‘(”””m), compose the
layer S-matrix 8"+™ of the partial multilayer M""+m),
taking the form

riv(n,n+m) ﬁ(n,n+m)

S(n,n+m) — . (16)
R(n,n+m) ri\(n,n+m)

With the above-defined symbols, the relationship be-
tween the layer S-matrix components of the larger partial
multilayer M™m*m+) and the layer S-matrix components
of two subpartial multilayers M"2+m) and Mn+m+ln+m+l)
making up M@+ can be constructed. Conventionally,
this relation is called the Redheffer star product of the
SMM. The Redheffer star product relation can be intu-
itively derived based on the physical process of infinite
multiple reflections between adjacent partial multilayer
blocks as indicated in Fig. 3.
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M (n,n+m+1)

M (n,n+m)

U (n.ntm+l)

ﬁ(mm—m) r'I_v(nJH-m)

ﬁ (n.n+m+l)
("’ (n.n+m) C(ruﬁ-m) )

a,(n.n+m) b.(n.n+m)

(@)

:> [T(n.nm) ﬁ(nﬂm)] :>

~(nntm+l)
a,(nn+m+l)

<

M (n+m+l,n+m+l)

R(n+m+Ln+m+I) T(n+m+hn+m+l)

[T(/z+m+l.n+m+1) R(n+rn+l.n+m+[)

(n,n+m+1)

-1

b.(n+m+l,ntm+l)

A (n+m+lntm+l)
a(n+m+lntm+l)

~(n+m+lntm+l) )

J

M (nn+m+l)

M(n,n+m)

R(I”Hm) fI“(nJHm)

(”: (m,n+m)

= || ©0 o) | =

(b)

n+m+ln+m+l
M
1

[T(n.nﬂn) R(n.n+m)] :>

p (n,n+m+l)
b,(n‘n+m+I)

ﬁ (n.n+m+1)

(T(mmﬂ.mmﬁ) li(n+m+l.n+m+l) <:

R(;r+m+l.n+m+l) T(n+rn+l.n+m+l)

l_i (n,n+m+l)
(C(mmﬂ.mmﬂ)

a,(n+m+lntm+l)

C(Mmﬂ.nwml) )

b.(n+m+ln+m+l)

Fig. 3. Intuitive derivation of the Redheffer star product relation through (a) the left-to-right directional characterization, (b) the right-

to-left directional characterization of the combined multilayer.

In the proposed SMM scheme, the relationship between
coupling coefficient matrices of the larger partial
multilayer M®2+m+) and those of the subpartial multilay-
ers Mn+tm) gnd p+m+lnimtl) jg 9]0 manifested. This re-
lationship can be called the extended Redheffer star prod-
uct of the coupling coefficients.

The infinite multiple reflections between multilayer
blocks, M7+m) and M+m+Lntm+) can he easily analyzed
by a simple ray-tracing approach. The relationships
among the layer S-matrix components of M®n+m)
MosmrLlintml) gnd pan+m+l) gre stated as follows:

ﬁ(n,n+m+l) — f{(n,nﬂn) + riv(n,n+m) E (f{(n+m+1,n+m+l)ﬁ(n,n+m))k
k=0

Xf{(n+m+l,n+m+l)vi‘(n,n+m)
— R(n,n+m) + ri‘(n,n+m)(I _ R(n+m+1,n+m+l)f{(n,n+m))—1

Xﬁ(n+m+1,n+m+l)vi‘(n,n+m) (]_7a)

ri\(n,n+m+l) — vi!(n+m+1,n+m+l)

% E(f{(n,n+m)ﬁ(n+m+1,n+m+l))k vi\(n,n+m)
k=0

— ri‘(n+m+1,n+m+l)(I _ ﬁ(n,nwn)

Xf{(n+m+l,n+m+l))—lri‘(n,n+m)’ (17b)

R(n,n+m+l) — ﬁ(n+m+1,n+m+l) + ri‘(n+m+1,n+m+l)

% E (ﬁ(n,n+m)ﬁ(n+m+1,n+m+l))k
k=0

Xﬁ(n,n+m)i‘(n+m+l,n+m+l)
— ﬁ(n+m+1,n+m+l) + riw(n+m+1,n+m+l)
X (I _ f{(n,n+m)ﬁ(n+m+1,n+m+l))—1

Xﬁ(n,n+m)vi!(n+m+l,n+m+l)’ (17(3)
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ri‘(n,n+m+l) — ri\(n,n+m) 2 (ﬁ(n+m+1,n+m+l)]§(n,n+m))k
k=0

X vi\(n+m+1,n+m+l)

— ri\(n,n+m)(I

_ R(n+m+l,n+m+l)ﬁ(n,n+m))—1ri\(n+m+l,n+m+l) . (17d)

The above-obtained relations are the well-known Redhef-
fer star product relation of the SMM. This relationship is
symbolized by the star product of the layer S-matrices as

S(n)n+m+l) — S(n,n+m) « S(n+m+1,n+m+l)' (18)

The Redheffer star product can be understood as the infi-
nite sum of multiple reflections and transmissions be-
tween adjacent multilayer blocks.

We also see that, during multiple reflections, the inter-
nal coupling coefficient matrices of all layers are updated,
since the whole process is linear and the coupling coeffi-
cient is linearly proportional to the external field. Hence,
the internal coupling coefficients in the combined
multilayer M@n+m+) can also be recursively extracted by

a similar formula. The set of the coupling coefficient ma-
. (n,n+m+l) (n,n+m+l) .
trices Ca (nnsmal) and Cb (nnsmal) of the combined
multilayer M®7+m+D are divided into two subparts as, re-

spectively,

C(n n+m+l) {C(n n+m+l) C(n(n+m+l) } (19&)

a,(n,n+m+l) — a,(n,n+m)? n+m+1,n+m+0)J >

C(n n+m+l) {C(n n+m+l) C(n n+m+l) }, (lgb)

b,(n,n+m+l) — b,(n,n+m)> ~b,(n+m+1,n+m+l)
(n,n+m+l) (n,n+m+l) ~(n,n+m+l)
where the subsets Ca J(n,n+m)’ Ca J(n+m+1,n+m+l)’ b,(n,n+m)?
d C n,n+m+l) tivelv. b
an b (n+m+1n+m+l) are glven, respectively, by
(n,n+m+l) _ ( ++l) (n,n+m+l) ( +m+l)
Can Z nnim) - {C i Can(;l+f1ﬂ LA an(z+:n¢) }’
(19¢)
(n,n+m+l) (n,n+m+l) (n,n+m+l) (n n+m+l)
Ca J(n+m+1,n+m+l) — {Ca,(n+m+1)’Ca,(n+m+2)’ T a (n+m+l)}’

(19d)

(n,n+m+l) _ (n,n+m+l) ~(n,n+m+l) (n,n+m+l)
Cb J(n,n+m) — {Cb ,(n) ’Cb,(n+1) [ b J(n+m) }

(19e)
~(n,n+m+l) _ (n,n+m+l) (n,n+m+l) (n n+m+l)
Cb,(n+m+1,n+m+l) - {Cb,(n+m+1)’cb,(n+m+2)’ cee b (n+m+l)}

(191)

The respective updated pairs of the set of the coupling co-

n,n+m+l) C n, n+m+l))

( 5 ( 5 a,(n,n+m)’ b, (n,n+m)
~(n,n+m+ ~(n,n+m+
( a,(n+m+1,n+m+l)’ b,(n+m+1,n+m+l)) in the part of layers

L,-L,.,, and in the part of layers L,,,,,.1—L,+m+; are ob-
tained by the following relations. For %k in the range of n
<k<n+m, the (4H) X (2H) coupling coefficient matrices,

efficient matrices (C and

C((In(,r:;' ™+ and Cé"(z; ") are derived as
C‘(In(z;-mﬂ) szn(z;—m) + C})rf(,lret;rm)(l _ ﬁ(n+m+l,n+m+l)ﬁ(n,n+m))—1
Xﬁ(n+m+1,n+m+l)ri\(n,n+m), (20&)
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Cé’?(,z)’rmﬂ) - Cg’l(,lr:;m)(l _ R(n+m+l,n+m+l)

Xf{(n,n+m))—lri\(n+m+1,n+m+l)_ (20b)

For % in the range of n+m+1<k<n+m+l, the coupling

coefficient matrices, CI(Z”(Z;' "+ and C(b'f(’,';;' m+)

as

, are derived

C((ln(z;rm#) C(n+m+1 n+m+l)(I

_ R(n,n+m)ﬁ(n+m+1,n+m+l))—lri\(n,n+m) (20¢)

C(n n+m+l) C(n+m+1 n+m-+l) C(n+m+1,n+m+l)
x(I- ﬁ(n,n+m)ﬁ(n+m+1,n+m+l))—l

Xf{(n,n+m)riw(n+m+1,n+m+l). (20d)

This relationship can be symbolized, using the notations
in Egs. (19a) and (19b), as

(é(n,n+m+l) é(n,n+m+l) )

a,(n,n+m+1)> >~ b,(n,n+m+l)

— (é(n,n+m) é(n,n+m) )* (é(n+m+1,n+m+l)

a,(n,n+m)> b, (n,n+m) a,(n+m+1,n+m+l)>

><é(n+m+1,n+m+l) ) (21)

b,(n+m+1,n+m+l)/ *

This is the extended Redheffer star product of the cou-
pling coefficient matrices. Considering the physical pro-
cess of infinite multiple reflections and transmissions be-
tween adjacent multilayer blocks, we can see that the
associative rules definitely exist in the derived Redheffer
star product relation of the coupling coefficients as well as
in the known Redheffer star product relation of the
S-matrix components. These associative rules enable the
parallel computation of the internal coupling coefficients.

Finally, with the aid of the associative rule, the layer
S-matrix and the coupling coefficient matrix of the
multilayer M) can be obtained by

SN Z §LD 4 §22) 4 ...« GN-LN-1), NN (99)

CON &L
(Ciany Coim)

L) &L 22) G2
=(C a,1,1>Co,(1,1) * (Ca,(2,2)’ b,(2, 2)) Hoee ok

S(N-1LN-1)  A(N-1,N-1) NN G
X(Cov-1.n-1Cov-1.n-1) * (Cg v vy Co v - (22D)

For achieving the completeness of the mathematical in-
duction, we should address the practical calculation of the
layer S-matrices of a single layer through the bidirec-
tional characterization with the RCWA. Considering the
nth layer, we can find the reflection coefficient matrix op-
erators and transmission coefficient matrix operators as
follows. In the case of left-to-right directional character-



2320 J. Opt. Soc. Am. A/Vol. 24, No. 8/August 2007

ization, the boundary conditions at both left and right
boundaries are described as, respectively,

W, W, U wr  whx® Cz(zr,LEZ;+
Vh - Vh ﬁ(n’n) = V(n) _ V(n)x(n) CEZ('Z;_ )
(23a)

W, W® 4 v v

a,(n)

R = W,:l[W(")Cgf(’3+ + W(")X(”)Cgfgz;_ -w,U],
(24b)

T = W [WOXWCTD + WICH ], (24c)
where W™, V) and X™ are the eigenvector matrices of
the electric field and the magnetic field in the layer L,
and the diagonal matrix of exponentials of eigenvalues,
respectively. W, and V), are the eigenvector matrices of
the electric field and magnetic field in the surrounding
medium given by, respectively,

- (1 0
h= o 1) (25a)
|: kx,stky,st :| |: (k%,z,st + kist)
jkOkl,z,st jkOkI 2,St
Vv, = . . (25Db)
" (k32»,st + k%,z,st) |: ky,sth,st :|
L jkOkI,z,st .jkOkI,z,st

In the case of the right-to-left directional characteriza-
tion, the boundary conditions at both left and right
boundaries are described as, respectively,

W [ WO WO
_Vh - _V(n)X(n) V(n) C(n’n)+ 5 ( a)

b,(n)
[ww W(">X<”>]<Cé’,‘<’23')_{wh Wh] R .
—_V® yxgm Czr,t(,z)ﬂ -V, Vi |[\gen /"

The following procedure is taken for stably solving Egs.
(26a) and (26b):

(nn)-
(Cbﬁ:{) )
(n,n)+
Cylin)

W w4 Vv, Ly )
- (W}—llw(n) _ V}—llv(n))x(n)

2U
>< b

(WZIW(”) - V#V(”))X(") -1
W, W™ v, v

(27a)

(n,n)+
Ca,(n) _
C(n,n)— - (Wﬁlw(”) _ V;lv(”))X(")
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() (n) (n,n)+
Wwxe W G _ Wi T (23b)
vxm _ym C(n,n)— - Vh .
a,(n)

The following procedure is preferred for stably solving
Eqgs. (23a) and (23b),

(wilw(n)_vl—llv(n))x(n) -1 26
> (24a)

W;,'W® 4 vty 0

RO = W;I[W(“Cﬁ,’f(,'f))‘ + vv(n)x(n)cg’z(,:ll))+ _ Whﬁ],
(27Db)

T = W [WWXWCED™ + WOCT.  (270)

Comparing Egs. (24a)—(24c) and Eqgs. (27a)—(27¢), we can
see that the following equalities actually hold:

RO = R, (28a)
T0w) = T, (28b)
(n,n)+ (n,n)-
(Ca% ) B (Cbr,L(Z) ) (28¢)
(n,n)- | — (n,n) .
Coin bin)

These equalities are due to the staircase approximation
adopted in the RCWA and used in the practical computa-
tion.

Next, the boundary S-matrices for the boundaries B,
and By are derived. The bidirectional characterization of
the boundaries B, and By for obtaining the boundary
S-matrices is illustrated in Figs. 4(a) and 4(b), respec-
tively. As mentioned previously, the input and the output
layers, Ly, and Ly,;, are actually half-infinite layers.
Hence the boundary S-matrices must be manifested to
connect these half-infinite layers to the finite body of the
multilayer MM

S00 T0.0 R0

- - , (29a)
R0 m0,0)

where 'i‘(o’o), R(0,0)’ ’i‘(o’o), and R are given by, respec-
tively,

TOO = 2[(WO)'W,, + (VO)7IV, 1, (29b)
RO =[(W,) "W + (V) "'V O]

X[- (W) WO+ (V)7 VO], (290)
TOO = 9[(W,) "W + (V,)'VOL, (29d)
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7O () | 0)( C ) 7 (0.0) )
L() L0
Input region

R™(=C;) R00)
= —>

=t
ﬁ G'

Input region

(@) 7

§ (N+1LN+1)

=

(N+1,N+1)

=

l_“(N”’N“) I“J(N+1,N+1)( c- )

N+l
X

N+l LN+]

J

Output region Output region

ﬁ(N+1,N+1)( CJ;VH)

= =

R (N+LN+1)

(b) B, B,

Fig. 4. Bidirectional characterization of (a) the boundary B, and
(b) the boundary By.

R0 = [(WO)-1W, + (VO)-ly,]!
X[= (W)W, + (VO)~1v,]. (29e)

The boundary S-matrix of the boundary By is also ob-
tained as

ri‘(N+1,N+1) R(N+1,N+1)

S(N+1,N+1) — (308.)
RW+LN+1)  p@V+1,N+1) ’

where TW+1,N+1) R(N+1,N+1) TW+1,N+1) and ﬁ(N+1,N+1) are
given by, respectively,

riw(N+1,N+1) — 2[(wh)—lw(N+1) + (Vh)_IV(N+1)]_1, (30b)

R(N+1,N+1) - [(W(N+1))—1wh + (V(N+1))—1Vh]—1
X[- (WA D)W, + (VE*D)TIY, ], (30c)

ri\(N+1,N+1) — 2[(w(N+1))—1Wh + (V<N+1))_1Vh]_1, (30d)

ﬁ(N+1,N+1) — [(Wh)—lw(N+1) + (Vh)—lv(N+1)]—1
X[— (W) TWHD 4 (v,) "IV (30e)

Finally, with the above results, we can construct the total
S-matrix of the whole multilayer MON+D At the first
step, the S-matrix SO of the multilayer MO is derived
by the Redheffer star product of S0 of Eq. (29a) and
SN of Eq. (22a) as
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SO.N) _ g0,0) 4 LN (31a)

The coupling coefficient matrices Cflo(%) and C;JOE%) 1<k

<N) of the layers L;—Ly in M®Y) are obtained by, from
Eqgs. (20c) and (20d):

(0,N) (ON) (1,N) (0,0)P (1,N)y-1q1(0,0) (+(1,N)
(Ca,(k)’ b(k))_(Ca (k) (I‘R( 'R N)) T )’Cb,(k)

+ CEJ,E%)(I _ f{(0,0)R(l,N))—lf{(0,0)riw(l,N)).
(31b)

Next, the total S-matrix SON+D of the multilayer MON+D
is obtained by the Redheffer star product of SO of Eq.
(31a) and SW+LN+D) of Eq. (30a) as

S(O,N+1) — S(O,N) % S(N+1’N+1). (323)
The final coupling coefficient matrix C(0 N+1) and C(O N+1)

(1<k<N) of the layers L{—Ly in M(é]\;"l) is obtamed
from Egs. (20a) and (20b):

(0,N+1) (ON 1)
(Ca,(k)+ b (k)+ )

— (CLO(%) 20 2?(1 R(N+1 N+1)R(O N)) lR(N+1 N+1)T(ON)

XCYUA (I~ RVFLVSURON)ITALND) - (39p)

The S-matrix S>¥*1 and the coupling coefficient matri-
ces, Cgo(%”) and C 0(1\;+1 provide the complete character-
ization of the multilayer MO+,

3. COMPARISON AND DISCUSSION

In this section, the proposed SMM and the conventional
SMM are compared. The advantage of the proposed SMM
is discussed. First, the conventional field calculation
method of the conventional SMM is introduced. In the
conventional SMM, only the boundary S-matrix that con-
nects the coupling coefficient operators of two layers at
both sides of a boundary is used. The boundary condition
at the boundary B,, is described by

Wox® W CE?L’)N””
vox®  _ym CEO,)N+1)—
n

A ACE VR VIEERY) (R CEOJ\BJH
n+
T virr)  _yxgesd) || @ON+1)-

(n+1)

(33)

Rearrangement of Eq. (33) gives the conventional bound-
ary S-matrix S®m):

(0,N+1)+ (0,N+1)+ - = (n,
C(n+1) —S(n,ﬂ) C(n) ~ t(n,n) I.(nn)
CEO,)N+1)— - CEO,I\SU— | glen) goun)

n n+

C(O,N+1)+

w 34

X CON+D- |2 (34a)
(n+1)

where the matrix components of the S-matrix are given
by

E(n,n) — 2[(w(n))—1w(n+1) + (V(n))—lv(n+1)]—lx(n)’ (34b)
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i’.(n,n) — [(w(n+1))—1w(n) + (V(n+1))—lv(n)]—1
X[— (W(n+1))—lw(n) + (V(n+1))—lv(n)]x(n), (340)

E(n,n) — 2[(w(n+1))—1w(n) + (V(n+1))—lv(n):|—lx(n+1)’
(34d)

i’.(n,n) — [(W(n))—lw(n+1) + (V(n))—lv(n+1)]—1
X[— (W(n))—lw(n+1) + (V(”>)‘1V("+1)]X("+1>.
(34e)

The total S-matrix SO is given by the consecutive Red-
heffer star product as the form

SON _ §0,0) , §2.2) 4 ... x NN (35a)

and holds the relation

(0,N+1)+ (0,N+1)+
P e
(0O,N+1)- | — (0,N+1)-
Coj Ciwva)

lf(o,m i’.(O,N)i| |:C(g,)N+1)+‘|

= (35D)
(0, (0,N+1

FON goN || cOND

In the conventional SMM, the internal coupling coeffi-
cient operators C(O;\)/ J(',})) * and C(0 N;',})) ~ at the nth layer L,
are calculated by summing the infinite multiple reflec-
tions and transmissions between M©7~D and pf++1L.N+1D)
as shown in Fig. 5, where the nth layer L, is sandwiched
between the left partial multilayer M©"-V and the right
partial multilayer M@+1.N+1),

The partial S-matrices S©7~D and S®N are prepared

as
E(O,n—l) i’.((),n—l)
S(0,n-1) _
S - f,(O,n—l) E(O,n—l) ’ (363)
i’;(n,]\f) f'(n’N)
S(n.N) _
S PO (36b)

The coupling coefficient matrix operators ClON+D+

a,(n)
CEZO(Z,Y”)_ Cgo(f:m” nd C(bo(ﬁm) are, respectively, ob-

tained by the previously used ray-tracing approach as

M(l.n—l)

LO Ll N’L

Input region 2 f(o‘"_l) E(l)‘n—l)

C(o N+)- oy

C(O,N+1)+ g cl
(0) o |:t(0,n—1) F(o,n-i)‘|
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Cilo(i\r)+1)+ (I - ¢On-DgnN))-1§0.n-1) (87a)
C((IO(I,YH = ¢V - $On-D§nN)-13(O0n-1) (37b)
Cé(?zzr:r)+1)+ = 0= - i‘.(n,l\’)f.(O,n—l))—l‘f(n,N)’ (37¢)
C;fiz:)u)- = (I = ¢ N§O0n-1)-1§0.N) (37d)

As shown above, in the conventional SMM, constructing

two composite S-matrices S©.n-1 apg SN jg necessary
for finding the coupling coefficients of the nth layer L,,.

Let us compare the numerical efficiency of the proposed
SMM and the conventional SMM in terms of operation
counts given in units of floating-point operations per sec-
ond (flops). Let the operation counts of multiplication, ad-
dition (or abstraction), and inversion of (2H) X (2H) com-
plex matrices be denoted by my;, m4, and mj, respectively.
In general, mj; and m; are proportional to (2H)3 [1,3].
From the definition of the Redheffer star product relation
in Egs. (17a)-(17d), we can count the flops in the star
product S1:2=811x822) g5

ent(R2) = dmy, + 2my + my, (38a)
ent(T1?) = 8my, + my +my, (38b)
ent(RM?) = 3myy + my, (38¢)
ent(TA2) = 2my,y,, (38d)

where cnt(A) means the operation counts in performing
the operation A and the common parts shared between
Egs. (17a) and (17d) and Eqgs. (17b) and (17c) are taken
into consideration. Hence the total operation count of
S1.2 =811+ §(2.2) ig given by the sum of Eqs. (38a)—(38d)
as

ent(ST?) = 12my, + 4my + 2my. (38e)

Taking the common parts shared between Egs. (20a) and
(17a), Eqgs. (20b) and (17d), Egs. (20c¢) and (17b), and Eqgs.
(20d) and (17c¢) into account, we can find the operation
counts of the star product of coupling coefficient matrices
as

M(n+l N)
Ln+1 . LN LN+1
0.N+1)+
o zem | €
§oM) _ r
(N) - 3oN) Output region

(O.N+1)-
Co

Fig. 5. Coupling coefficient calculation in the conventional SMM.
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ent(C3) = 2myy + 2may, (39a)
ent(Cy3) = 2myy, (39b)
ent(CL ) = 2my, (39¢)
ent(Cy3) = 2my + 2my. (39d)

Hence the total operation count of (Ca (L 2),Cél(1 2))

=€), Cit ) +(€25),),CEY,) is obtained by the sum

of Egs. (39a)—(39d) as
ent[(CU1y), ity ] = 8mys + 4my. (39)

Considering the multilayer structure shown in Fig. 1, we
can estimate the total operation count, T, for perform-
ing Egs. (22a) and (22b) as

T

orop = ent(SEY) + ent[(CL Ay, €Ll ) 1= ent(S12)

=S 4 5(2,2>) + cnt(S(l’S)

=812+ 8§6B3) 4 ... 4 ent(STNV

= SNV« §NN) 4 ent[(CL 7y, CyiTy)]

+entl(Colils), Chitls)] + -+ + ent[(CH N, )]
=(N-1)A2my+4my +2mp) +[2+3+ --- + N]
X(4dmyr+2my) = (N — 1)(12myr + 4my + 2my)
+(N=1)(N +2)(2my +my) = (2N? + 14N - 16)my,
+(N?+5N - 6)my + (2N — 2)m;. (40)
On the other hand, in the case of the conventional SMM,

the total operation count of S12=81D:x§22 is also
given by

ent(S12) = STV & §@2)) = 19m,, + dmy + 2m;.  (41)

After the partial S-matrices S©.n-1 and SN are obained
for the the nth layer L, the operation counts for obtain-
ing the coupling coefficient matrix operators are given,
from Eqs. (37a)—(37d), By

cnt(CfB{J,Y)“H) =2my+my +my, (42a)
ent(CA) = myy, (42b)
cnt(Cé?gfl\r)”)") =2my+my +my, (42¢)
ent(CRA ) = myy. (42d)

Thus the total operation count of the conventional SMM,

T.onvs 1s estimated as

Teony = Cnt((S(O,O),S(l,N))) + Cnt((é(o’l),é(Q,N))) +

+ ent((SON-1, SV:V))

(0,N+1)+ ~(0,N+1)- (0,N+1)+ (ON+1)—
+ent[(C, ) Gy G0 LG ]+
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+Cnt[(C(0N+1)+ C(0N+l)— C(ON+1)+ (0N+1) )]

(V) () b,(N)
=N[(N— 1)(12mM+ 4mA + 2m1) + 6mM+ ZmA + 2m1]
= (12N?% - 6N)my + (4N? - 2N)m , + 2N?m;. (43)

Let us estimate the difference between the operation
counts of the conventional SMM, T,,, and those of the

proposed SMM, T),,,,:

Teony = Torop = (10N? = 20N + 16)my; + (3N* = TN + 6)my
+(2N?-2N +2)m;> 0. (44)

Therefore we can see that, in terms of the operation
counts, the proposed SMM is superior to the conventional
SMM. The reason is that in the proposed SMM, the
S-matrix and the coupling coefficient matrices evolve to-
gether at each stage, whereas in the conventional SMM,
the coupling coefficient matrices are found in just the in-
dependent postprocess, including the calculation of

SOn-1) and §®™N which generally requires a heavy com-
putational cost as estimated in Eq. (43). This difference
between the proposed SMM and the conventional SMM
with respect to the computational efficiency becomes more
noticeable as the number of layers and the size of matri-
ces increase. This is actually a main computational limi-
tation of the conventional SMM [4]. However, the pro-
posed SMM with the newly defined Redheffer star
product of the coupling coefficient operators may over-
come the computational inefficiency of the conventional
SMM.

In Section 1, two types of parallelism were addressed.
The first is the transversal parallelism using the matrix
parallel computation with parallel linear algebra libraries
such as the SCALAPACK. In this parallelism, the computa-
tion overhead is relatively high since each matrix opera-
tion is performed with accompanying continuous
message-passing interface communication. However, the
second parallelism that was mainly focused on is the lon-
gitudinal parallelism based on the inherent structure of
the SMM. In this parallelism, the communication be-
tween CPUs does not often occur. The strategy of the lon-
gitudinal parallelism is just divide and solve. In other
words, before using the binary scheme, all CPUs can work
independently without any necessary communication
with other CPUs. Until this stage, the numerical effi-
ciency of the parallelism using M CPUs is exactly M times
over the serial computation, since there is not significant
communication overhead. After finishing its own compu-
tation of the partial S-matrices and partial coupling coef-
ficient matrices, a CPU in a pair of two CPUs passes its
calculation results, that is, S-matrix and coupling coeffi-
cient matrices of its partial multilayer, to its neighbor
CPU. And then the receiving CPU works to combine two
adjacent partial multilayers. In this work, the communi-
cation between two CPUs is very simple and just once oc-
curs. This type of simple communication, just data trans-
fer, can be realized by data transfer through direct
networking or writing and reading on common hard
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disks. Usually, the operation time required for this simple
data transfer is relatively very small compared with the
main matrix computation of RCWA and the S-matrix op-
eration. Actually, in the first transversal parallelism, the
computational overhead accompanying the use of the
SCALAPACK would be important. However, in this paper,
just the second parallelism is focused on and discussed.
Therefore, in the proposed SMM, just data transfer would
be the elements of possible overhead. Thus, it can be said
that the computational overhead inherent in the second
parallelism (longitudinal parallelism) is small, and so the
enhancement factor of using M CPUs would be approxi-
mately M times over using just serial computation with a
single CPU.

On the other hand, the most notable functional advan-
tage of the proposed SMM is the functional block-based
FMM as illustrated in Fig. 6. The most important appli-
cation of the associative rule of the SMM is the functional
block-based FMM, where with the S-matrix information
from independently analyzed two-block systems, A and B,
we can completely characterize the combined system of
two blocks. In the conventional SMM, the characteriza-
tion of the input and output properties of the total
S-matrix is generally considered. However, when obtain-
ing the internal field distributions, the conventional SMM
recalculates all internal coupling coefficients of the com-
bined system using the above-described method. This
classical algorithm is very inefficient and a main origin of
the computational limitation of the conventional SMM.
Our refined Redheffer star product relation of the cou-
pling coefficient matrices of the proposed SMM actually
overcomes this limitation. We can obtain the internal field
distribution very efficiently by the simple step described
in Eq. (21). Therefore the proposed SMM is a very effec-
tive tool for the functional block-based FMM.

In addition, our refined Redheffer star product relation
of the coupling coefficients enables the efficient parallel
binary-tree computation of the extended SMM. We can ef-
fectively exploit the parallelism of the proposed SMM by
adopting the parallel binary-tree scheme in the practical
computation. Let us assume that the total number of the
bodies of the multilayer N is N=K X M, where K is a posi-
tive integer and M is the number of nodes of the parallel
computer used for the computation. In addition, the node
number M is assumed to be M =2". In this configuration,
we can divide the multilayer structure into M blocks com-
posed of K layers as shown in Fig. 7. Since the parallel
computer has M CPUs, the mth CPU in the parallel com-
puter should calculate the S-matrix of the mth block in a
serial manner. After achieving the characterization infor-
mation of all blocks using the extended SMM, we can
combine the S-matrices and the coupling coefficient ma-
trix operators of all blocks by using the binary-tree ap-
proach. For a systematic description, let the index sets be
defined as

SA S 5 S B = SB * SA
System A | @ | System B ‘ System A | System B
¢, Cp Cip =C,*Cp

Fig. 6. Functional block-based FMM.
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Fig. 7. Multilayer structure divided into M blocks containing K
layers.
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M,={mgylmy=1,2,3,...,2°} forp=0,1,...,logs M,
(45)

and let the S-matrix and the coupling coefficient matrices
of m ,) be denoted by ”SEZL)(")), éim(l(f))), and é;’m(g)). At the first
stage, the (2m,)_;)th block and the (Zm;p))th block are
combined in to a single block. After the combination, the
index set is changed to M,,_;. The constructed block is de-
noted by the (m,_1))th block in the index set M,_;. The
total number of blocks is 2F-1. This process is denoted by

'SE;"_V{;“) = Sg;"(m"l) * Sg;n“’)), (46a)
Cme-1) @mp-1)
(Ca,(p—l) ’Cb,(p—l) )
=(2 _-1) #(2 -1 =(2 _ =(2 _
- @ B G T, (aety

By p iterations of the recursion equations, we finally ob-
tain the total S-matrix of the multilayer body S@4Y

><(=§E(1);). It is noted that this parallel binary scheme for
obtaining the coupling coefficient matrices cannot be con-
structed within the conventional SMM, since in the con-
ventional SMM the computation of the coupling coeffi-
cients is an independent postprocessing after finding the
total S-matrix, and so its algorithm structure cannot be
distributable on the binary-tree structure. However, in
the proposed SMM, through the Redheffer star product
relation of the coupling coefficient matrices, the parallel
binary-tree computation is naturally adopted for obtain-
ing the coupling coefficient matrices. Regarding the
memory requirement on the parallel computing environ-
ment, the construction of the necessary partial S-matrices
in the conventional SMM does not have advantages over
the proposed SMM, since each partial layer requires its
own memory containing all primitive S-matrices of single
layers for calculating its own specifically formed S-matrix
pair.

4. NUMERICAL RESULTS

In this section, the RCWA examples of the proposed SMM
and the ETMM are compared to prove the validity of the
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proposed SMM. We examine the RCWA results of the
three-dimensional circular dielectric fiber-tip structure
shown in Fig. 8(a). The original continuous structure is
approximately modeled by the staircase multilayer struc-

y 0.1
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ture of 16 layers as shown in Fig. 8(b). The first layer is
the half-infinite circular fiber structure, and the last layer
is the half-infinite free space. Thus the body of the tip is
composed of 14 layers. In this example, the wavelength of

Fig. 8. Example target structure: (a) dielectric fiber tip, (b) multilayer structure modeling of the fiber tip with the staircase

approximation.
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Fig. 9. (a) First selected input mode profile (in the x—y plane), (b) excited electric field distribution (in the z—x plane), (c) second selected
input mode profile (in the x—y plane), (d) excited electric field distribution (in the z—x plane).
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Fig. 10. (a) Coupling coefficients of the positive eigenmodes and (b) those of the negative eigenmodes excited by the first selected input
mode; (c) the deviation between the coupling coefficients of the positive modes obtained by the proposed SMM and by the ETMM; (d) the
deviation between the coupling coefficients of the negative modes obtained by the proposed SMM and by the ETMM.
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Fig. 11. (a) Coupling coefficients of the positive eigenmodes and (b) those of the negative eigenmodes excited by the second selected
input mode; (c) the deviation between the coupling coefficients of the positive modes obtained by the proposed SMM and by the ETMM;
(d) the deviation between the coupling coefficients of the negative modes obtained by the proposed SMM and by the ETMM.

the optical field is 632.8 nm, both the x-direction and the x-direction and y-direction transverse Fourier frequencies
y-direction periods are 4 um, the fiber diameter in the in- used in the RCWA are equally set to 15.
put region is 1.69 um, the tip length is 8.75 um, and the Since the input region is a circular fiber structure, we

refractive index of the fiber tip is 1.5. The numbers of the can selectively choose the incidence mode profiles among
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several eigenmodes of the fiber structure. Figures 9(a)
and 9(c) show the transverse electric field profiles of the
first and second selected modes. The electric field distri-
butions in the vertical cross-section plane (in the x—z
plane) for the incidence of the first and second modes ob-
tained by using the proposed SMM are visualized in Figs.
9(b) and 9(d), respectively. We can observe clear differ-
ences in the diffraction patterns of the electric fields of the
two incidence modes.

In addition, the obtained results of the proposed SMM
are compared with those of the ETMM. The distributions
of the coupling coefficients c(o 19+ and c(o 1%~ for the first
incidence mode obtained by tﬁe propose(hlgr SMM are plot-
ted in Figs. 10(a) and 10(b), respectively. These distribu-
tions are obtained from Egs. (11e) and (11f). The coupling
coefficient distributions are also calculated with the
ETMM for comparison. Then the deviations Ac(o 15)+

Ac 20;5) between the coupling coefficient dlstrlbutlons ob-
tained by the SMM and those by the ETMM are pre-
sented in Figs. 10(c) and 10(d), respectively. As a result,
we can see that the deviations are negligible and the re-
sult of the SMM agrees highly with that of the ETMM. In
Figs. 11(a) and 11(b), the coupling coefficient distributions
obtained for the second incidence mode through the same
manner are plotted. The deviations between the results of
the SMM and those of the ETMM are presented in Figs.
11(c) and 11(d). Also, in this case, the deviations are neg-
ligible, and the result of the SMM agrees highly with that
of the ETMM. Furthermore, we can confirm that the cou-
pling coefficient matrix obtained by the SMM does totally
agree with that obtained by the ETMM. By these com-
parisons, the validity of the proposed scheme is proved.

and

5. CONCLUSION

In this paper, an extended and refined SMM is proposed
for the efficient full parallel implementation of the FMM.
The motivation of this study is to overcome the computa-
tional limitation of the conventional SMM. The main re-
sult is the Redheffer star product relation of the coupling
coefficient operators and the following refinement of the
SMM. In this paper, it is shown that the proposed SMM is
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successfully applied to the RCWA. However, the proposed
scheme is so general that it can also be adopted in other
FMMs using a multilayer-based structure modeling such
as the pseudo-Fourier modal analysis method. The com-
plete parallel implementation of the FMMs through the
proposed SMM is a requisite for the functional block-
based Fourier modal analysis of various photonic circuit
structures requiring large-scale parallel computation.
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