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An extended and refined scattering-matrix method is proposed for the efficient full parallel implementation of
rigorous coupled-wave analysis of multilayer structures. The total electromagnetic field distribution in the rig-
orous coupled-wave analysis is represented by the linear combination of the eigenmodes with their own cou-
pling coefficients. In the proposed scheme, a refined recursion relation of the coupling coefficients of the eigen-
modes is defined for complete parallel computation of the electromagnetic field distributions within multilayer
structures. © 2007 Optical Society of America
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. INTRODUCTION
arge-scale numerical analysis of Maxwell’s equations is

nevitable in modern nano-optics and nanophotonics.
here are many branches of methodologies for numeri-
ally solving Maxwell’s equations. For large-scale analy-
es, the exploitation of parallelism is commonly important
n these methodologies. Thus novel algorithms are being
ctively researched to refine and improve existing meth-
dologies to be appropriate for the parallel supercomput-
ng environment.

The Fourier modal method (FMM) is a well-known ac-
urate and efficient electromagnetic analysis method in
he fields of nano-optics and nanophotonics. In the FMM,
hole space, including target structures, is modeled by
ultilayer structures. The electromagnetic eigenmodes in

ach layer are separately characterized. In the FMM, ba-
ically, electromagnetic vector fields and structure pro-
les, i.e., permittivity and permeability, are represented

n the Fourier domain (spatial-frequency domain or recip-
ocal space of the spatial domain), where the standard dif-
erential equation form of Maxwell’s equations in the spa-
ial domain is converted into an equivalent algebraic
atrix eigenvalue equation of the Fourier coefficients of

he electromagnetic fields. The total electromagnetic field
istributions within as well as outside multilayer struc-
ures are represented by the linear combination of the
igenmodes with their own coupling coefficients. Coupling
oefficients are determined to satisfy the tangential field
ontinuation conditions on the boundaries between adja-
ent layers, which can be obtained by use of the
cattering-matrix method (SMM) of various forms [1–4].
dditional physical information such as power flow, cou-
ling efficiency, and separate visualization of evanescent
nd nonevanescent field distributions can be extracted by
roper data processing of the obtained modal field infor-
ation provided by the FMM. We can obtain physical in-
1084-7529/07/082313-15/$15.00 © 2
uitions on the interactions between the electromagnetic
elds and structures and also exploit structural advan-
ages of the SMM for efficient functional block-based
nalysis. This modal analysis is the most remarkable fea-
ure of the FMM. Within this general framework of the
MM, the possible parallelism for the practical parallel
omputation can be found at two points. The first paral-
elism lies in solving large matrix equations using the
ell-developed up-to-date parallel algebra libraries such
s SCALAPACK. As the transversal direction supercell peri-
ds (usually x and y-direction periods) in the FMM in-
rease, the required number of Fourier harmonics in-
reases rapidly. As a result, the total size of the
igenvalue equation becomes so large that the size of the
MM cannot be manageable in a single personal com-
uter. Thus using parallel linear algebra libraries such as
CALAPACK is essential to the FMM for structures having
arge transversal supercell periods. This kind of parallel

atrix computation has already been established in the
upercomputing field.

In addition to this matrix parallelism, a different par-
llelism is necessary for structures having large longitu-
inal direction dimensions. As the longitudinal extent of a
arget structure becomes large, more layers are needed in
he multilayer modeling of the structure. In this case, the
ossible parallelism can be found in the computational
tructure of the SMM. The SMM has its own parallelism
n the associative relation that exists in the Redheffer
tar product of the scattering matrix (S-matrix). This as-
ociative relation of the Redheffer star product is ex-
loited for the parallel computing of the FMM with the
ultilayer-based structure modeling. However, we note

hat the potential parallelism has not been fully exploited
n the conventional scheme of the SMM in that the proper
arallel algorithm for obtaining coupling coefficients has
ot been developed. In [4], it is pointed out that the main
007 Optical Society of America
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omputational limitation of the conventional SMM is in
he calculation of coupling coefficients of the eigenmodes.

In this paper, the investigation of this second parallel-
sm is our focus. A refined and extended formulation of
he SMM is proposed for realizing efficient full parallel
omputation of the electromagnetic field distributions
ithin multilayer structures. The Redheffer star product

elation in the conventional SMM is defined as the recur-
ive relation between the components of the S-matrix. In
his paper, it is shown that a similar relation between the
oupling coefficients of eigenmodes exists. The Redheffer
tar product relation is extended to the coupling coeffi-
ients of eigenmodes. The associative relation of the ex-
ended Redheffer star product is a key factor for the par-
llel computation of the electromagnetic field
istributions within multilayer structures. This extended
edheffer star product relation is the main result of this
aper. This scheme is so general that it can be widely ap-
lied to FMMs such as the rigorous coupled-wave analy-
is (RCWA) [5–9] and the pseudo-Fourier modal analysis
ethod [10,11].
In this paper, the proposed SMM is described in the

CWA framework. The RCWA is the most popular and
ell-established methods among the FMMs. For proving

he validity of the proposed SMM, the field distributions
nd coupling coefficients obtained by the enhanced trans-
ittance matrix method (ETMM) [12] and the proposed
MM for an exemplary structure are compared. The
TMM is a well-known accurate and stable boundary-
atching method, which is a serial algorithm that cannot

e parallelized. It is shown that the numerical result of
he SMM does highly agree with that of the ETMM.

This paper is organized as follows. In Section 2, the
roposed SMM is described in the RCWA framework. The
edheffer star product relation of the coupling coefficients

or the parallel computation of electromagnetic field dis-
ributions within multilayer structures is addressed. In
ection 3, the advantages of the proposed SMM over the
onventional SMM are discussed. In particular, the func-
ional block-based FMM is presented as the most remark-
ble advantage of the proposed SMM. In Section 4, nu-
erical results for verifying the proposed method are

resented. In Section 5, the conclusion and final remarks
re given.

. EXTENDED SCATTERING-MATRIX
ETHOD

n this section, the extended SMM having the additional
edheffer star product relation of coupling coefficients of
igenmodes is described in the RCWA framework [5–7].
he main objective of the proposed SMM is the efficient
arallel computation of the electromagnetic field distribu-
ions within multilayer structures.

Figure 1 shows a general multilayer structure with N
2 layers and N+1 boundaries between adjacent layers.

n the RCWA, the staircase approximation is adopted in
he multilayer modeling, under which each layer has per-
ittivity and permeability profiles, being periodic in the

ransverse x and y directions, but is homogeneous along
he longitudinal z direction normal to the boundaries. The
th layer and nth boundary are denoted by L and B .
n n
he total structure is composed of the input region, the
ultilayer body, and the output region. The multilayer

ody is denoted by M�1,N�, where the superscript �1,N� in-
icates the first and last indices of layers composing the
ultilayer body. The input and output regions surround-

ng the multilayer body are denoted by L0 and LN+1, re-
pectively, which are half-infinite structures that may be
homogeneous space such as free space or an inhomoge-
eous space such as general waveguide structures.
In this paper, we conceptually distinguish two types of

-matrix form for convenience. One is the S-matrix for
he characterization of the layer. The other is the
-matrix for the characterization of the boundary. The de-

ailed meanings of these terms will be given in the follow-
ng paragraphs.

At first, the layer S-matrix is considered. We adopt the
athematical induction for addressing general and com-

lete formalism. Before the formulation of the SMM is un-
olded, an understanding of the bidirectional character-
zation of a partial multilayer in the RCWA framework is
ecessary. In Fig. 2, the bidirectional characterization of a
artial multilayer M�n,n+m� composed of consecutive m
ayers, Ln–Ln+m, is illustrated, where the superscript
n ,n+m� indicates the first and last indices of layers com-
osing the partial multilayer M�n,n+m�. We assume that
he partial multilayer M�n,n+m� is surrounded by a homo-
eneous and isotropic medium, i.e., free space, and the
hickness of the homogeneous medium is set to zero for
he domain decomposition [4]. The bidirectional charac-
erization of the partial multilayer M�n,n+m� is referred to
n obtaining the reflected, transmitted, and internal field
istributions excited by two independent incident fields
ropagating in the left-to-right direction and the right-to-
eft direction, which are illustrated in Figs. 2(a) and 2(b),
espectively. In Fig. 2, the fields propagating along the
eft-to-right direction and the right-to-left direction are
ymbolized by the superscript arrow symbols → and ←,
espectively. The meanings of the other conventions and
ymbols seen in Fig. 2 are explained in the following para-
raphs.

Let us first consider the left-to-right directional charac-
erization of the partial multilayer M�n,n+m�. In the
CWA, a set of the discrete wave vector �kx,st ,ky,st ,kz,st�

Fig. 1. Multilayer structure for the RCWA.



i
d
s

w
s
s
p
0
a
�
h

i
T
d

W
c
d
i
t
f
c
�
F

l
i
�
s
fi

f

f

t
t
t
r
U

F
r

Kim et al. Vol. 24, No. 8 /August 2007 /J. Opt. Soc. Am. A 2315
ndicating the �s , t�th diffraction channel (diffraction or-
er) is prepared, each component of which is defined, re-
pectively, by

kx,st = kx +
2�s

�x
, �1a�

ky,st = ky +
2�t

�y
, �1b�

kz,st = ��2�

�
�2

− �kx,st�2 − �ky,st�2�1/2

, �1c�

here �, �x, and �y denote wavelength, the x-direction
upercell period, and the y-direction supercell period, re-
pectively. kx and ky are the x-direction wave-vector com-
onent and the y-direction wave-vector component of the
th diffraction channel. The diffraction order indices, s
nd t, are integers in the range of −P�s�P and −Q� t
Q, respectively. In this case, the total number of Fourier

armonics used in the RCWA is �2P+1��2Q+1�.
Let us assume that an input plane wave given by

U� st = �x�u� x,st + y�u� y,st + z�u� z,st�exp�j�kx,stx + ky,sty + kz,stz��

�2a�

s incident on the left boundary Bn−1 of the nth layer Ln.
he plane wave of Eq. (2a) can be split into two indepen-
ent polarizations, U� st,�x� and U� st,�y�, respectively,

U� st,�x� = �x�u� x,st + �− u� x,stkx,st

kz,st
�z��

�exp�j�k x + k y + k z��, �2b�

ig. 2. Bidirectional characterization of a multilayer for obtainin
ight-to-left directional characterization.
x,st y,st z,st
U� st,�y� = �y�u� y,st + �− u� y,stky,st

kz,st
�z��

�exp�j�kx,stx + ky,sty + kz,stz��. �2c�

e can see that there are two independent diffraction
hannels with the same wave vector. For the �s , t�th inci-
ent direction,�kx,st ,ky,st ,kz,st�, two independently polar-
zed input excitations of Eqs. (2b) and (2c) can produce
he respective reflection and transmission fields. There-
ore, in the RCWA, the total number of the diffraction
hannels (diffraction orders) is considered to be 2�2P+1�
�2Q+1�, which is the twice the number of the retained
ourier harmonics.
For convenience, using the one-dimensional raw-

eading ordering, let the index pair �s , t� be equivalently
ndicated by a single index f given in the range of 1� f

2H, where H is set to H= �2P+1��2Q+1�. The relation-
hip between the index pair �s , t� and the index f is de-
ned by

= �s + P��2Q + 1� + t + Q + 1 for 1 � f � H, �3a�

= �s + P��2Q + 1� + t + Q + H + 1 for H + 1 � f � 2H,

�3b�

hrough which we can extract the index pair �s , t� from
he index f, using the above relationship. In addition, let
he index f in the range of 1� f�H and the index f in the
ange of H+1� f�2H be allocated to indicate U� st,�x� and
�

st,�y�, respectively. In other words, we take the relations

U� f = �y�u� y,st + �− u� y,stky,st

kz,st
�z��

�exp�j�kx,stx + ky,sty + kz,stz�� for 1 � f � H,

�4a�

layer S-matrices: (a) left-to-right directional characterization, (b)
g the



F
d
t
r
a

I
fi

w
m
�
a
d
f
t
+

r
m
r
t
E

F
o
r

w
b

a
e

w
W
e
r
I
c
+
c

s
c
fi

w
c

T
C
c
a
w

T
t
p
f

2316 J. Opt. Soc. Am. A/Vol. 24, No. 8 /August 2007 Kim et al.
U� f = �x�u� x,st + �− u� x,stkx,st

kz,st
�z��

�exp�j�kx,stx + ky,sty + kz,stz��

for H + 1 � f � 2H. �4b�

ollowing the above indexing scheme, the electric field
istribution in the left homogeneous medium excited by
he single excitation of the fth diffraction channel, E� L,f, is
epresented by the superposition of the incident field, U� f,
nd the reflected field as

E� L,f = U� f + �
h

�x�r�x,hf
�n,n+m� + y�r�y,hf

�n,n+m� + z�r�z,hf
�n,n+m��

�exp�j�kx,hx + ky,hy − kz,hz��. �5a�

n the right homogeneous region, the transmitted electric
eld E� R,f is represented by

E� R,f = �
h

�x�t�x,hf
�n,n+m� + y�t�y,hf

�n,n+m� + z�t�z,hf
�n,n+m��

�exp�j�kx,hx + ky,hy + kz,h�z − ln,n+m���, �5b�

here the superscript �n ,n+m� indicates the partial
ultilayer M�n,n+m�, and �r�x,hf

�n,n+m� , r�y,hf
�n,n+m� , r�z,hf

�n,n+m�� and
t�x,hf

�n,n+m� , t�y,hf
�n,n+m� , t�z,hf

�n,n+m�� denote the reflection coefficients
nd the transmission coefficients, respectively, of the hth
iffraction channel excited by an input excitation on the
th diffraction channel. ln,n+m is the thickness of the par-
ial multilayer M�n,n+m� given by ln,n+m=dn+dn+1
¯dn+m, where dk is the thickness of the kth layer.
On the other hand, let the electric and magnetic field

epresentations in the �n+k�th layer Ln+k of the partial
ultilayer M�n,n+m� be denoted by E� �n+k�,f

�n,n+m� and H� �n+k�,f
�n,n+m�,

espectively, where the subscript f indicates the diffrac-
ion channel of the excitation source. In the RCWA,
� �n+k�,f

�n,n+m� and H� �n+k�,f
�n,n+m� take, respectively, the forms of

E� �n+k�,f
�n,n+m� = �

p=−P

P

�
q=−Q

Q

�x�S�n+k�,x,pqf
�n,n+m� �z� + y�S�n+k�,y,pqf

�n,n+m� �z�

+ z�S�n+k�,z,pqf
�n,n+m� �z��exp�j�kx,pqx + ky,pqy��, �6a�

H� �n+k�,f
�n,n+m� = j� �0

�0
�

p=−P

P

�
q=−Q

Q

�x�U�n+k�,x,pqf
�n,n+m� �z� + y�U�n+k�,y,pqf

�n,n+m�

��z� + z�U�n+k�,z,pqf
�n,n+m� �z��exp�j�kx,pqx + ky,pqy��.

�6b�

or simplicity, following the one-dimensional raw-leading
rdering defined in Eqs. (3a) and (3b), Eqs. (6a) and (6b)
ead, respectively, as

E� �n+k�,f
�n,n+m� = �

h=1

H

�x�S�n+k�,x,hf
�n,n+m� �z� + y�S�n+k�,y,hf

�n,n+m� �z� + z�S�n+k�,z,hf
�n,n+m� �z��

�exp�j�k x + k y��, �7a�
x,h y,h
H� �n+k�,f
�n,n+m� = j� �0

�0
�
h=1

H

�x�U�n+k�,x,hf
�n,n+m� �z� + y�U�n+k�,y,hf

�n,n+m� �z�

+ z�U�n+k�,z,hf
�n,n+m� �z��exp�j�kx,hx + ky,hy��, �7b�

here the index pair �p ,q� can be equivalently indicated
y the single index h given by

h = �p + P��2Q + 1� + q + Q + 1

for 1 � h � H = �2P + 1��2Q + 1� �7c�

nd vector components S�n+k�,h
�n,n+m��z� and U�n+k�,h

�n,n+m��z� of the
lectric and magnetic fields are given, respectively, by

S�n+k�,hf
�n,n+m��z� = �

g
Wh,g

�n+k�	c�n+k�,gf
�n,n+m�+ exp�qg

�n+k��z − l1,n+k−1��

+ c�n+k�,gf
�n,n+m�− exp�− qg

�n+k��z − l1,n+k��
, �7d�

U�n+k�,hf
�n,n+m��z� = �

g
Vh,g

�n+k�	c�n+k�,gf
�n,n+m�+ exp�qg

�n+k��z − l1,n+k−1��

− c�n+k�,gf
�n,n+m�− exp�− qg

�n+k��z − l1,n+k��
, �7e�

here notation convention follows that of [4,5]. qg
�n+k�,

h,g
�n+k�, and Vh,g

�n+k� are the gth eigenvalue and the gth
igenvectors of the electric field and the magnetic field,
espectively, and l1,n+k is given by l1,n+k=d1+d2+ ¯dn+k.
t is noted in Eqs. (7d) and (7e) that the positive coupling
oefficient and the negative coupling coefficient in the �n
k�th layer Ln+k are distinguished and denoted by

�n+k�,gf
�n,n+m�+ and c�n+k�,gf

�n,n+m�−, respectively.
Let the column vectors of the reflection and transmis-

ion coefficients, r� f
�n,n+m� and t�f

�n,n+m�, obtained with a spe-
ific input excitation on the fth diffraction channel be de-
ned by

r� f
�n,n+m� = ��r�y,hf

�n,n+m��

�r�x,hf
�n,n+m��� , �8a�

t�f
�n,n+m� = ��t�y,hf

�n,n+m��

�t�x,hf
�n,n+m��� , �8b�

here the square brackets of r�y,hf
�n,n+m�, �r�y,hf

�n,n+m��, denote a
olumn vector with the dimensions of H�1,

�r�y,hf
�n,n+m�� = �r�y,1f

�n,n+m�,r�y,2f
�n,n+m�, . . . ,r�y,Hf

�n,n+m��t. �8c�

hus, the dimensions of r� f
�n,n+m� and t�f

�n,n+m� are 2H�1.
ollecting all r� f

�n,n+m� and t�f
�n,n+m� for f=1,2, ¯ ,2H, we

an define a reflection coefficient matrix operator R� �n,n+m�

nd a transmission coefficient matrix operator T� �n,n+m�

ith the dimensions of �2H�� �2H� as, respectively,

R� �n,n+m� = �r�1
�n,n+m�,r�2

�n,n+m�, . . . ,r�2H
�n,n+m��, �9a�

T� �n,n+m� = �t�1
�n,n+m�,t�2

�n,n+m�, . . . ,t�2H
�n,n+m��. �9b�

hen, by applying the reflection coefficient matrix opera-
or and transmission coefficient matrix operator to the in-
ut vector u� f containing the only single excitation on the
th diffraction channel, we can obtain the reflection and
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ransmission coefficient column vectors by the following
perations:

r� f
�n,n+m� = R� �n,n+m�u� f, �10a�

t�f
�n,n+m� = T� �n,n+m�u� f, �10b�

here u� f is defined by ��uy,f�mf� , �ux,f�mf��t. Here �mf is the
ronecker delta function. Now, we take the normalized

nput vector, u� f= ��mf�, by setting uy,f=1 and ux,f=1. Also,
2H�� �2H� matrix operators of the coupling coefficients,

a,�n+k�
�n,n+m�+ and Ca,�n+k�

�n,n+m�−, are defined as

Ca,�n+k�
�n,n+m�+ = �ca,�n+k�,1

�n,n+m�+,ca,�n+k�,2
�n,n+m�+, . . . ,ca,�n+k�,2H

�n,n+m�+ �, �11a�

Ca,�n+k�
�n,n+m�− = �ca,�n+k�,1

�n,n+m�−,ca,�n+k�,2
�n,n+m�−, . . . ,ca,�n+k�,H

�n,n+m�− �, �11b�

here ca,�n+k�,f
�n,n+m�+ and ca,�n+k�,f

�n,n+m�− are the column vectors of the
ositive coupling coefficient c�n+k�,gf

�n,n+m�+ and the negative cou-
ling coefficient c�n+k�,gf

�n,n+m�−, respectively, defined by

ca,�n+k�,f
�n,n+m�+ = �c�n+k�,gf

�n,n+m�+�, �11c�

ca,�n+k�,f
�n,n+m�− = �c�n+k�,gf

�n,n+m�−�, �11d�

nd the subscript a indicates the left-to-right directional
haracterization. In a similar manner in Eqs. (10a) and
10b), the coupling coefficients induced by a single input
xcitation on the fth diffraction channel are obtained as

ca,�n+k�,f
�n,n+m�+ = Ca,�n+k�

�n,n+m�+u� f, �11e�

ca,�n+k�,f
�n,n+m�− = Ca,�n+k�

�n,n+m�−u� f. �11f�

ext, let the �4H�� �2H� coupling coefficient matrix

a,�n+k�
�n,n+m� composed of the coupling coefficient matrix opera-

ors Ca,�n+k�
�n,n+m�+ and Ca,�n+k�

�n,n+m�− be defined as

Ca,�n+k�
�n,n+m� = �Ca,�n+k�

�n,n+m�+

Ca,�n+k�
�n,n+m�−� . �12a�

et the set of the coupling coefficient matrix, Ca,�n+k�
�n,n+m�,

˜
a,�n,n+m�
�n,n+m� , be defined by

C̃a,�n,n+m�
�n,n+m� = 	Ca,�n�

�n,n+m�,Ca,�n+1�
�n,n+m�, . . . ,Ca,�n+m�

�n,n+m�
. �12b�

n addition, let the matrix operator U� be defined, simply,
y the �2H�� �2H� identity matrix

U� = �u� 1 u� 2 . . . u� 2H� = �I 0

0 I� , �13�

hich can be thought as the input operator expressing all
ossible input excitations. The matrix operators, R� �n,n+m�,

� �n,n+m�, Ca,�n+k�
�n,n+m�+, and Ca,�n+k�

�n,n+m�−, provide the complete in-
ormation on the left-to-right directional characteristics of
he partial multilayer M�n,n+m�.

On the other hand, let us consider the right-to-left di-
ectional characterization of the partial multilayer

�n,n+m�. In this case, the input field in the right homoge-
eous region is represented by
U� f = �x�u� x,f + y�u� y,f + z�u� z,f�exp�j�kx,fx + ky,fy − kz,f�z − dn,n+m���.

�14a�

n the right homogeneous region, the electric field distri-
ution E� R,f is represented by the superposition of the in-
ident field and the reflected field distributions as

E� R,f = U� f + �
h

�x�r�x,hf
�n,n+m� + y�r�y,hf

�n,n+m� + z�r�z,hf
�n,n+m��

�exp�j�kx,hx + ky,hy + kz,h�z − dn,n+m���. �14b�

n the left homogeneous region, the transmitted electric
eld is represented by

E� L,f = �
h

�x�t�x,hf
�n,n+m� + y�t�y,hf

�n,n+m� + z�t�z,hf
�n,n+m��

�exp�j�kx,hx + ky,hy − kz,hz��. �14c�

n the same way as in the case of the left-to-right direc-
ional characterization, we can define the matrix opera-
ors U� �n,n+m�, R� �n,n+m�, T� �n,n+m�, Cb,�n+k�

�n,n+m�+, and Cb,�n+k�
�n,n+m�− in

he right-to-left directional characterization of the partial
ultilayer M�n,n+m�. In the definitions of Cb,�n+k�

�n,n+m�+ and

b,�n+k�
�n,n+m�−, the subscript b indicates the right-to-left direc-

ional characterization. In practice, for the right-to-left di-
ectional characterization, we just have to reverse the op-
ic axis in the RCWA without making any changes in the
ultilayer structure. However, considering that the optic

xis is reversed, we can define the �4H�� �2H� coupling
oefficient matrix Cb,�n+k�

�n,n+m� composed of the coupling coef-
cient matrix operators Cb,�n+k�

�n,n+m�+ and Cb,�n+k�
�n,n+m�−, in con-

rast to the definition of Ca,�n+k�
�n,n+m� in Eq. (12a), as

Cb,�n+k�
�n,n+m� = �Cb,�n+k�

�n,n+m�−

Cb,�n+k�
�n,n+m�+� . �15a�

hen the set of the coupling coefficient matrix Cb,�n+k�
�n,n+m� is

efined by

C̃b,�n,n+m�
�n,n+m� = 	Cb,�n�

�n,n+m�,Cb,�n+1�
�n,n+m�, . . . ,Cb,�n+m�

�n,n+m�
. �15b�

In the proposed SMM scheme, the above-stated opera-
ors, R� �n,n+m�, T� �n,n+m�, R� �n,n+m�, and T� �n,n+m�, compose the
ayer S-matrix S�n,n+m� of the partial multilayer M�n,n+m�,
aking the form

S�n,n+m� =�T� �n,n+m� R� �n,n+m�

R� �n,n+m� T� �n,n+m�� . �16�

With the above-defined symbols, the relationship be-
ween the layer S-matrix components of the larger partial
ultilayer M�n,n+m+l� and the layer S-matrix components

f two subpartial multilayers M�n,n+m� and M�n+m+1,n+m+l�

aking up M�n,n+m+l� can be constructed. Conventionally,
his relation is called the Redheffer star product of the
MM. The Redheffer star product relation can be intu-

tively derived based on the physical process of infinite
ultiple reflections between adjacent partial multilayer

locks as indicated in Fig. 3.
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In the proposed SMM scheme, the relationship between
oupling coefficient matrices of the larger partial
ultilayer M�n,n+m+l� and those of the subpartial multilay-

rs M�n,n+m� and M�n+m+1,n+m+l� is also manifested. This re-
ationship can be called the extended Redheffer star prod-
ct of the coupling coefficients.
The infinite multiple reflections between multilayer

locks, M�n,n+m� and M�n+m+1,n+m+l�, can be easily analyzed
y a simple ray-tracing approach. The relationships
mong the layer S-matrix components of M�n,n+m�,

�n+m+1,n+m+l�, and M�n,n+m+l� are stated as follows:

� �n,n+m+l� = R� �n,n+m� + T� �n,n+m���
k=0

	

�R� �n+m+1,n+m+l�R� �n,n+m��k�
�R� �n+m+1,n+m+l�T� �n,n+m�

= R� �n,n+m� + T� �n,n+m��I − R� �n+m+1,n+m+l�R� �n,n+m��−1

ig. 3. Intuitive derivation of the Redheffer star product relation
o-left directional characterization of the combined multilayer.
�R� �n+m+1,n+m+l�T� �n,n+m�, �17a�
T� �n,n+m+l� = T� �n+m+1,n+m+l�

���
k=0

	

�R� �n,n+m�R� �n+m+1,n+m+l��k�T� �n,n+m�

= T� �n+m+1,n+m+l��I − R� �n,n+m�

�R� �n+m+1,n+m+l��−1T� �n,n+m�, �17b�

R� �n,n+m+l� = R� �n+m+1,n+m+l� + T� �n+m+1,n+m+l�

���
k=0

	

�R� �n,n+m�R� �n+m+1,n+m+l��k�
�R� �n,n+m�T� �n+m+1,n+m+l�

= R� �n+m+1,n+m+l� + T� �n+m+1,n+m+l�

��I − R� �n,n+m�R� �n+m+1,n+m+l��−1

�R� �n,n+m�T� �n+m+1,n+m+l�, �17c�

gh (a) the left-to-right directional characterization, (b) the right-
throu
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T� �n,n+m+l� = T� �n,n+m���
k=0

	

�R� �n+m+1,n+m+l�R� �n,n+m��k�
�T� �n+m+1,n+m+l�

= T� �n,n+m��I

− R� �n+m+1,n+m+l�R� �n,n+m��−1T� �n+m+1,n+m+l�. �17d�

he above-obtained relations are the well-known Redhef-
er star product relation of the SMM. This relationship is
ymbolized by the star product of the layer S-matrices as

S�n,n+m+l� = S�n,n+m� � S�n+m+1,n+m+l�. �18�

he Redheffer star product can be understood as the infi-
ite sum of multiple reflections and transmissions be-
ween adjacent multilayer blocks.

We also see that, during multiple reflections, the inter-
al coupling coefficient matrices of all layers are updated,
ince the whole process is linear and the coupling coeffi-
ient is linearly proportional to the external field. Hence,
he internal coupling coefficients in the combined
ultilayer M�n,n+m+l� can also be recursively extracted by
similar formula. The set of the coupling coefficient ma-

rices C̃a,�n,n+m+l�
�n,n+m+l� and C̃b,�n,n+m+l�

�n,n+m+l� of the combined
ultilayer M�n,n+m+l� are divided into two subparts as, re-

pectively,

C̃a,�n,n+m+l�
�n,n+m+l� = 	C̃a,�n,n+m�

�n,n+m+l�,C̃a,�n+m+1,n+m+l�
�n,n+m+l� 
, �19a�

C̃b,�n,n+m+l�
�n,n+m+l� = 	C̃b,�n,n+m�

�n,n+m+l�,C̃b,�n+m+1,n+m+l�
�n,n+m+l� 
, �19b�

here the subsets C̃a,�n,n+m�
�n,n+m+l�, C̃a,�n+m+1,n+m+l�

�n,n+m+l� , C̃b,�n,n+m�
�n,n+m+l�,

nd C̃b,�n+m+1,n+m+l�
�n,n+m+l� are given, respectively, by

C̃a,�n,n+m�
�n,n+m+l� = 	Ca,�n�

�n,n+m+l�,Ca,�n+1�
�n,n+m+l�, . . . ,Ca,�n+m�

�n,n+m+l�
,

�19c�

C̃a,�n+m+1,n+m+l�
�n,n+m+l� = 	Ca,�n+m+1�

�n,n+m+l� ,Ca,�n+m+2�
�n,n+m+l� , . . . ,Ca,�n+m+l�

�n,n+m+l�
,

�19d�

C̃b,�n,n+m�
�n,n+m+l� = 	Cb,�n�

�n,n+m+l�,Cb,�n+1�
�n,n+m+l�, . . . ,Cb,�n+m�

�n,n+m+l�
,

�19e�

C̃b,�n+m+1,n+m+l�
�n,n+m+l� = 	Cb,�n+m+1�

�n,n+m+l� ,Cb,�n+m+2�
�n,n+m+l� , . . . ,Cb,�n+m+l�

�n,n+m+l�
.

�19f�

he respective updated pairs of the set of the coupling co-
fficient matrices �C̃a,�n,n+m�

�n,n+m+l� ,C̃b,�n,n+m�
�n,n+m+l�� and

C̃a,�n+m+1,n+m+l�
�n,n+m+l� ,C̃b,�n+m+1,n+m+l�

�n,n+m+l� � in the part of layers

n–Ln+m and in the part of layers Ln+m+1–Ln+m+l are ob-
ained by the following relations. For k in the range of n
k�n+m, the �4H�� �2H� coupling coefficient matrices,

a,�k�
�n,n+m+l� and Cb,�k�

�n,n+m+l�, are derived as

Ca,�k�
�n,n+m+l� = Ca,�k�

�n,n+m� + Cb,�k�
�n,n+m��I − R� �n+m+1,n+m+l�R� �n,n+m��−1

�R� �n+m+1,n+m+l�T� �n,n+m�, �20a�
Cb,�k�
�n,n+m+l� = Cb,�k�

�n,n+m��I − R� �n+m+1,n+m+l�

�R� �n,n+m��−1T� �n+m+1,n+m+l�. �20b�

or k in the range of n+m+1�k�n+m+ l, the coupling
oefficient matrices, Ca,�k�

�n,n+m+l� and Cb,�k�
�n,n+m+l�, are derived

s

Ca,�k�
�n,n+m+l� = Ca,�k�

�n+m+1,n+m+l��I

− R� �n,n+m�R� �n+m+1,n+m+l��−1T� �n,n+m�, �20c�

Cb,�k�
�n,n+m+l� = Cb,�k�

�n+m+1,n+m+l� + Ca,�k�
�n+m+1,n+m+l�

��I − R� �n,n+m�R� �n+m+1,n+m+l��−1

�R� �n,n+m�T� �n+m+1,n+m+l�. �20d�

his relationship can be symbolized, using the notations
n Eqs. (19a) and (19b), as

�C̃a,�n,n+m+l�
�n,n+m+l� ,C̃b,�n,n+m+l�

�n,n+m+l� �

= �C̃a,�n,n+m�
�n,n+m� ,C̃b,�n,n+m�

�n,n+m� � � �C̃a,�n+m+1,n+m+l�
�n+m+1,n+m+l� ,

�C̃b,�n+m+1,n+m+l�
�n+m+1,n+m+l� �. �21�

his is the extended Redheffer star product of the cou-
ling coefficient matrices. Considering the physical pro-
ess of infinite multiple reflections and transmissions be-
ween adjacent multilayer blocks, we can see that the
ssociative rules definitely exist in the derived Redheffer
tar product relation of the coupling coefficients as well as
n the known Redheffer star product relation of the
-matrix components. These associative rules enable the
arallel computation of the internal coupling coefficients.
Finally, with the aid of the associative rule, the layer

-matrix and the coupling coefficient matrix of the
ultilayer M�1,N� can be obtained by

S�1,N� = S�1,1� � S�2,2� � ¯ � S�N−1,N−1� � S�N,N�, �22a�

C̃a,�1,N�
�1,N� ,C̃b,�1,N�

�1,N� �

= �C̃a,�1,1�
�1,1� ,C̃b,�1,1�

�1,1� � � �C̃a,�2,2�
�2,2� ,C̃b,�2,2�

�2,2� � � ¯ �

��C̃a,�N−1,N−1�
�N−1,N−1� ,C̃b,�N−1,N−1�

�N−1,N−1� � � �C̃a,�N,N�
�N,N� ,C̃b,�N,N�

�N,N� �. �22b�

or achieving the completeness of the mathematical in-
uction, we should address the practical calculation of the
ayer S-matrices of a single layer through the bidirec-
ional characterization with the RCWA. Considering the
th layer, we can find the reflection coefficient matrix op-
rators and transmission coefficient matrix operators as
ollows. In the case of left-to-right directional character-
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zation, the boundary conditions at both left and right
oundaries are described as, respectively,

�Wh Wh

Vh − Vh
�� U�

R� �n,n�� = �W�n� W�n�X�n�

V�n� − V�n�X�n���Ca,�n�
�n,n�+

Ca,�n�
�n,n�−� ,
�23a� E

C
s
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a
t

a
t
S
t
l
H
c
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w
t

W�n�X�n� W�n�

V�n�X�n� − V�n���Ca,�n�
�n,n�+

Ca,�n�
�n,n�−� = �Wh

Vh
�T� �n,n�. �23b�

he following procedure is preferred for stably solving

qs. (23a) and (23b),
�Ca,�n�
�n,n�+

Ca,�n�
�n,n�−� = � Wh

−1W�n� + Vh
−1V�n� �Wh

−1W�n� − Vh
−1V�n��X�n�

�Wh
−1W�n� − Vh

−1V�n��X�n� Wh
−1W�n� + Vh

−1V�n� �−1�2U�

0
� , �24a�
R� �n,n� = Wh
−1�W�n�Ca,�n�

�n,n�+ + W�n�X�n�Ca,�n�
�n,n�− − WhU� �,

�24b�

T� �n,n� = Wh
−1�W�n�X�n�Ca,�n�

�n,n�+ + W�n�Ca,�n�
�n,n�−�, �24c�

here W�n�, V�n�, and X�n� are the eigenvector matrices of
he electric field and the magnetic field in the layer Ln
nd the diagonal matrix of exponentials of eigenvalues,
espectively. Wh and Vh are the eigenvector matrices of
he electric field and magnetic field in the surrounding
edium given by, respectively,

Wh = �I 0

0 I� , �25a�

Vh =  � kx,stky,st

jk0kI,z,st
� � �kI,z,st

2 + kx,st
2 �

jk0kI,z,st
�

�−
�ky,st

2 + kI,z,st
2 �

jk0kI,z,st
� �−

ky,stkx,st

jk0kI,z,st
� � . �25b�

n the case of the right-to-left directional characteriza-
ion, the boundary conditions at both left and right
oundaries are described as, respectively,

� Wh

− Vh
�T� �n,n� = � W�n�X�n� W�n�

− V�n�X�n� V�n���Cb,�n�
�n,n�−

Cb,�n�
�n,n�+� , �26a�

W�n� W�n�X�n�

− V�n� V�n�X�n���Cb,�n�
�n,n�−

Cb,�n�
�n,n�+� = � Wh Wh

− Vh Vh
�� U�

R� �n,n�� . �26b�

he following procedure is taken for stably solving Eqs.
26a) and (26b):

Cb,�n�
�n,n�−

Cb,�n�
�n,n�+�
= � Wh

−1W�n� + Vh
−1V�n� �Wh

−1W�n� − Vh
−1V�n��X�n�

�Wh
−1W�n� − Vh

−1V�n��X�n� Wh
−1W�n� + Vh

−1V�n� �−1

��2U�

0
� , �27a�
R� �n,n� = Wh
−1�W�n�Cb,�n�

�n,n�− + W�n�X�n�Cb,�n�
�n,n�+ − WhU� �,

�27b�

T� �n,n� = Wh
−1�W�n�X�n�Cb,�n�

�n,n�− + W�n�Cb,�n�
�n,n�+�. �27c�

omparing Eqs. (24a)–(24c) and Eqs. (27a)–(27c), we can
ee that the following equalities actually hold:

R� �n,n� = R� �n,n�, �28a�

T� �n,n� = T� �n,n�, �28b�

�Ca,�n�
�n,n�+

Ca,�n�
�n,n�−� = �Cb,�n�

�n,n�−

Cb,�n�
�n,n�+� . �28c�

hese equalities are due to the staircase approximation
dopted in the RCWA and used in the practical computa-
ion.

Next, the boundary S-matrices for the boundaries B0
nd BN are derived. The bidirectional characterization of
he boundaries B0 and BN for obtaining the boundary
-matrices is illustrated in Figs. 4(a) and 4(b), respec-

ively. As mentioned previously, the input and the output
ayers, L0 and LN+1, are actually half-infinite layers.
ence the boundary S-matrices must be manifested to

onnect these half-infinite layers to the finite body of the
ultilayer M�1,N�:

S�0,0� =�T� �0,0� R� �0,0�

R� �0,0� T� �0,0�� , �29a�

here T� �0,0�, R� �0,0�, T� �0,0�, and R� �0,0� are given by, respec-
ively,

T� �0,0� = 2��W�0��−1Wh + �V�0��−1Vh�−1, �29b�

R� �0,0� = ��Wh�−1W�0� + �Vh�−1V�0��−1

��− �Wh�−1W�0� + �Vh�−1V�0��, �29c�

T� �0,0� = 2��W �−1W�0� + �V �−1V�0��−1, �29d�
h h
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R� �0,0� = ��W�0��−1Wh + �V�0��−1Vh�−1

��− �W�0��−1Wh + �V�0��−1Vh�. �29e�

he boundary S-matrix of the boundary BN is also ob-
ained as

S�N+1,N+1� =�T� �N+1,N+1� R� �N+1,N+1�

R� �N+1,N+1� T� �N+1,N+1�� , �30a�

here T� �N+1,N+1�, R� �N+1,N+1�, T� �N+1,N+1�, and R� �N+1,N+1� are
iven by, respectively,

T� �N+1,N+1� = 2��Wh�−1W�N+1� + �Vh�−1V�N+1��−1, �30b�

R� �N+1,N+1� = ��W�N+1��−1Wh + �V�N+1��−1Vh�−1

��− �W�N+1��−1Wh + �V�N+1��−1Vh�, �30c�

T� �N+1,N+1� = 2��W�N+1��−1Wh + �V�N+1��−1Vh�−1, �30d�

R� �N+1,N+1� = ��Wh�−1W�N+1� + �Vh�−1V�N+1��−1

��− �Wh�−1W�N+1� + �Vh�−1V�N+1��. �30e�

inally, with the above results, we can construct the total
-matrix of the whole multilayer M�0,N+1�. At the first
tep, the S-matrix S�0,N� of the multilayer M�0,N� is derived
y the Redheffer star product of S�0,0� of Eq. (29a) and
�1,N� of Eq. (22a) as

ig. 4. Bidirectional characterization of (a) the boundary B0 and
b) the boundary BN.
S�0,N� = S�0,0� � S�1,N�. �31a�

he coupling coefficient matrices Ca,�k�
�0,N� and Cb,�k�

�0,N� �1�k
N� of the layers L1–LN in M�0,N� are obtained by, from
qs. (20c) and (20d):

�Ca,�k�
�0,N�,Cb,�k�

�0,N�� = �Ca,�k�
�1,N��I − R� �0,0�R� �1,N��−1T� �0,0�,Cb,�k�

�1,N�

+ Ca,�k�
�1,N��I − R� �0,0�R� �1,N��−1R� �0,0�T� �1,N��.

�31b�

ext, the total S-matrix S�0,N+1� of the multilayer M�0,N+1�

s obtained by the Redheffer star product of S�0,N� of Eq.
31a) and S�N+1,N+1� of Eq. (30a) as

S�0,N+1� = S�0,N� � S�N+1,N+1�. �32a�

he final coupling coefficient matrix Ca,�k�
�0,N+1� and Cb,�k�

�0,N+1�

1�k�N� of the layers L1–LN in M�0,N+1� is obtained
rom Eqs. (20a) and (20b):

Ca,�k�
�0,N+1�,Cb,�k�

�0,N+1��

= �Ca,�k�
�0,N� + Cb,�k�

�0,N��I − R� �N+1,N+1�R� �0,N��−1R� �N+1,N+1�T� �0,N�,

�Cb,�k�
�0,N��I − R� �N+1,N+1�R� �0,N��−1T� �N+1,N+1��. �32b�

he S-matrix S�0,N+1� and the coupling coefficient matri-
es, Ca,�k�

�0,N+1� and Cb,�k�
�0,N+1�, provide the complete character-

zation of the multilayer M�0,N+1�.

. COMPARISON AND DISCUSSION
n this section, the proposed SMM and the conventional
MM are compared. The advantage of the proposed SMM

s discussed. First, the conventional field calculation
ethod of the conventional SMM is introduced. In the

onventional SMM, only the boundary S-matrix that con-
ects the coupling coefficient operators of two layers at
oth sides of a boundary is used. The boundary condition
t the boundary Bn is described by

W�n�X�n� W�n�

V�n�X�n� − V�n���C�n�
�0,N+1�+

C�n�
�0,N+1�−�

= �W�n+1� W�n+1�X�n+1�

V�n+1� − V�n�X�n+1���C�n+1�
�0,N+1�+

C�n+1�
�0,N+1�−� . �33�

earrangement of Eq. (33) gives the conventional bound-
ry S-matrix Ŝ�n,n�:

�C�n+1�
�0,N+1�+

C�n�
�0,N+1�−� = Ŝ�n,n��C�n�

�0,N+1�+

C�n+1�
�0,N+1�−� = �t��n,n� r� �n,n�

r� �n,n� t��n,n��
��C�n�

�0,N+1�+

C�n+1�
�0,N+1�−� , �34a�

here the matrix components of the S-matrix are given
y

t��n,n� = 2��W�n��−1W�n+1� + �V�n��−1V�n+1��−1X�n�, �34b�
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r� �n,n� = ��W�n+1��−1W�n� + �V�n+1��−1V�n��−1

��− �W�n+1��−1W�n� + �V�n+1��−1V�n��X�n�, �34c�

t��n,n� = 2��W�n+1��−1W�n� + �V�n+1��−1V�n��−1X�n+1�,

�34d�

r� �n,n� = ��W�n��−1W�n+1� + �V�n��−1V�n+1��−1

��− �W�n��−1W�n+1� + �V�n��−1V�n+1��X�n+1�.

�34e�

he total S-matrix Ŝ�0,N� is given by the consecutive Red-
effer star product as the form

Ŝ�0,N� = Ŝ�0,0� � Ŝ�2,2� � ¯ � Ŝ�N,N� �35a�

nd holds the relation

�C�N+1�
�0,N+1�+

C�0�
�0,N+1�−� = Ŝ�0,N��C�0�

�0,N+1�+

C�N+1�
�0,N+1�−�

= �t��0,N� r� �0,N�

r� �0,N� t��0,N���C�0�
�0,N+1�+

C�N+1�
�0,N+1�−� . �35b�

n the conventional SMM, the internal coupling coeffi-
ient operators Ca�b�,�n�

�0,N+1�+ and Ca�b�,�n�
�0,N+1�− at the nth layer Ln

re calculated by summing the infinite multiple reflec-
ions and transmissions between M�0,n−1� and M�n+1,N+1�

s shown in Fig. 5, where the nth layer Ln is sandwiched
etween the left partial multilayer M�0,n−1� and the right
artial multilayer M�n+1,N+1�.
The partial S-matrices Ŝ�0,n−1� and Ŝ�n,N� are prepared

s

Ŝ�0,n−1� = �t��0,n−1� r� �0,n−1�

r� �0,n−1� t��0,n−1�� , �36a�

Ŝ�n,N� = �t��n,N� r� �n,N�

r� �n,N� t��n,N�� . �36b�

he coupling coefficient matrix operators Ca,�n�
�0,N+1�+,

a,�n�
�0,N+1�−, Cb,�n�

�0,N+1�+, and Cb,�n�
�0,N+1�− are, respectively, ob-

ained by the previously used ray-tracing approach as

Fig. 5. Coupling coefficient ca
Ca,�n�
�0,N+1�+ = �I − r� �0,n−1�r� �n,N��−1t��0,n−1�, �37a�

Ca,�n�
�0,N+1�− = r� �n,N��I − r� �0,n−1�r� �n,N��−1t��0,n−1�, �37b�

Cb,�n�
�0,N+1�+ = r� �0,n−1��I − r� �n,N�r� �0,n−1��−1t��n,N�, �37c�

Cb,�n�
�0,N+1�− = �I − r� �n,N�r� �0,n−1��−1t��n,N�. �37d�

s shown above, in the conventional SMM, constructing
wo composite S-matrices Ŝ�0,n−1� and Ŝ�n,N� is necessary
or finding the coupling coefficients of the nth layer Ln.

Let us compare the numerical efficiency of the proposed
MM and the conventional SMM in terms of operation
ounts given in units of floating-point operations per sec-
nd (flops). Let the operation counts of multiplication, ad-
ition (or abstraction), and inversion of �2H�� �2H� com-
lex matrices be denoted by mM, mA, and mI, respectively.
n general, mM and mI are proportional to �2H�3 [1,3].
rom the definition of the Redheffer star product relation

n Eqs. (17a)–(17d), we can count the flops in the star
roduct S�1,2�=S�1,1��S�2,2� as

cnt�R� �1,2�� = 4mM + 2mA + mI, �38a�

cnt�T� �1,2�� = 3mM + mA + mI, �38b�

cnt�R� �1,2�� = 3mM + mA, �38c�

cnt�T� �1,2�� = 2mM, �38d�

here cnt�A� means the operation counts in performing
he operation A and the common parts shared between
qs. (17a) and (17d) and Eqs. (17b) and (17c) are taken

nto consideration. Hence the total operation count of
�1,2�=S�1,1��S�2,2� is given by the sum of Eqs. (38a)–(38d)
s

cnt�S�1,2�� = 12mM + 4mA + 2mI. �38e�

aking the common parts shared between Eqs. (20a) and
17a), Eqs. (20b) and (17d), Eqs. (20c) and (17b), and Eqs.
20d) and (17c) into account, we can find the operation
ounts of the star product of coupling coefficient matrices
s

ion in the conventional SMM.
lculat
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cnt�Ca,�1�
�1,2�� = 2mM + 2mA, �39a�

cnt�Cb,�1�
�1,2�� = 2mM, �39b�

cnt�Ca,�2�
�1,2�� = 2mM, �39c�

cnt�Cb,�2�
�1,2�� = 2mM + 2mA. �39d�

ence the total operation count of �C̃a,�1,2�
�1,2� ,C̃b,�1,2�

�1,2� �
�C̃a,�1,1�

�1,1� ,C̃b,�1,1�
�1,1� �� �C̃a,�2,2�

�2,2� ,C̃b,�2,2�
�2,2� � is obtained by the sum

f Eqs. (39a)–(39d) as

cnt��C̃a,�1,2�
�1,2� ,C̃b,�1,2�

�1,2� �� = 8mM + 4mA. �39e�

onsidering the multilayer structure shown in Fig. 1, we
an estimate the total operation count, Tprop, for perform-
ng Eqs. (22a) and (22b) as

Tprop = cnt�S�1,N�� + cnt��C̃a,�1,N�
�1,N� ,C̃b,�1,N�

�1,N� �� = cnt�S�1,2�

= S�1,1� � S�2,2�� + cnt�S�1,3�

= S�1,2� � S�3,3�� + ¯ + cnt�S�1,N�

= S�1,N−1� � S�N,N�� + cnt��C̃a,�1,2�
�1,2� ,C̃b,�1,2�

�1,2� ��

+ cnt��C̃a,�1,3�
�1,3� ,C̃b,�1,3�

�1,3� �� + ¯ + cnt��C̃a,�1,N�
�1,N� ,C̃b,�1,N�

�1,N� ��

= �N − 1��12mM + 4mA + 2mI� + �2 + 3 + ¯ + N�

��4mM + 2mA� = �N − 1��12mM + 4mA + 2mI�

+ �N − 1��N + 2��2mM + mA� = �2N2 + 14N − 16�mM

+ �N2 + 5N − 6�mA + �2N − 2�mI. �40�

n the other hand, in the case of the conventional SMM,
he total operation count of Ŝ�1,2�= Ŝ�1,1�� Ŝ�2,2� is also
iven by

cnt�Ŝ�1,2� = Ŝ�1,1� � Ŝ�2,2�� = 12mM + 4mA + 2mI. �41�

fter the partial S-matrices Ŝ�0,n−1� and Ŝ�n,N� are obained
or the the nth layer Ln, the operation counts for obtain-
ng the coupling coefficient matrix operators are given,
rom Eqs. (37a)–(37d), By

cnt�Ca,�n�
�0,N+1�+� = 2mM + mA + mI, �42a�

cnt�Ca,�n�
�0,N+1�−� = mM, �42b�

cnt�Cb,�n�
�0,N+1�−� = 2mM + mA + mI, �42c�

cnt�Cb,�n�
�0,N+1�+� = mM. �42d�

hus the total operation count of the conventional SMM,
conv, is estimated as

Tconv = cnt��Ŝ�0,0�,Ŝ�1,N��� + cnt��Ŝ�0,1�,Ŝ�2,N��� + ¯

+ cnt��Ŝ�0,N−1�,Ŝ�N,N���

+ cnt��Ca,�1�
�0,N+1�+,Ca,�1�

�0,N+1�−,Cb,�1�
�0,N+1�+,Cb,�1�

�0,N+1�−�� + ¯
+ cnt��Ca,�N�
�0,N+1�+,Ca,�N�

�0,N+1�−,Cb,�N�
�0,N+1�+,Cb,�N�

�0,N+1�−��

= N��N − 1��12mM + 4mA + 2mI� + 6mM + 2mA + 2mI�

= �12N2 − 6N�mM + �4N2 − 2N�mA + 2N2mI. �43�

et us estimate the difference between the operation
ounts of the conventional SMM, Tconv, and those of the
roposed SMM, Tprop:

Tconv − Tprop = �10N2 − 20N + 16�mM + �3N2 − 7N + 6�mA

+ �2N2 − 2N + 2�mI 
 0. �44�

herefore we can see that, in terms of the operation
ounts, the proposed SMM is superior to the conventional
MM. The reason is that in the proposed SMM, the
-matrix and the coupling coefficient matrices evolve to-
ether at each stage, whereas in the conventional SMM,
he coupling coefficient matrices are found in just the in-
ependent postprocess, including the calculation of

ˆ �0,n−1� and Ŝ�n,N�, which generally requires a heavy com-
utational cost as estimated in Eq. (43). This difference
etween the proposed SMM and the conventional SMM
ith respect to the computational efficiency becomes more
oticeable as the number of layers and the size of matri-
es increase. This is actually a main computational limi-
ation of the conventional SMM [4]. However, the pro-
osed SMM with the newly defined Redheffer star
roduct of the coupling coefficient operators may over-
ome the computational inefficiency of the conventional
MM.
In Section 1, two types of parallelism were addressed.

he first is the transversal parallelism using the matrix
arallel computation with parallel linear algebra libraries
uch as the SCALAPACK. In this parallelism, the computa-
ion overhead is relatively high since each matrix opera-
ion is performed with accompanying continuous
essage-passing interface communication. However, the

econd parallelism that was mainly focused on is the lon-
itudinal parallelism based on the inherent structure of
he SMM. In this parallelism, the communication be-
ween CPUs does not often occur. The strategy of the lon-
itudinal parallelism is just divide and solve. In other
ords, before using the binary scheme, all CPUs can work

ndependently without any necessary communication
ith other CPUs. Until this stage, the numerical effi-

iency of the parallelism using M CPUs is exactly M times
ver the serial computation, since there is not significant
ommunication overhead. After finishing its own compu-
ation of the partial S-matrices and partial coupling coef-
cient matrices, a CPU in a pair of two CPUs passes its
alculation results, that is, S-matrix and coupling coeffi-
ient matrices of its partial multilayer, to its neighbor
PU. And then the receiving CPU works to combine two
djacent partial multilayers. In this work, the communi-
ation between two CPUs is very simple and just once oc-
urs. This type of simple communication, just data trans-
er, can be realized by data transfer through direct
etworking or writing and reading on common hard
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isks. Usually, the operation time required for this simple
ata transfer is relatively very small compared with the
ain matrix computation of RCWA and the S-matrix op-

ration. Actually, in the first transversal parallelism, the
omputational overhead accompanying the use of the
CALAPACK would be important. However, in this paper,
ust the second parallelism is focused on and discussed.
herefore, in the proposed SMM, just data transfer would
e the elements of possible overhead. Thus, it can be said
hat the computational overhead inherent in the second
arallelism (longitudinal parallelism) is small, and so the
nhancement factor of using M CPUs would be approxi-
ately M times over using just serial computation with a

ingle CPU.
On the other hand, the most notable functional advan-

age of the proposed SMM is the functional block-based
MM as illustrated in Fig. 6. The most important appli-
ation of the associative rule of the SMM is the functional
lock-based FMM, where with the S-matrix information
rom independently analyzed two-block systems, A and B,
e can completely characterize the combined system of

wo blocks. In the conventional SMM, the characteriza-
ion of the input and output properties of the total
-matrix is generally considered. However, when obtain-

ng the internal field distributions, the conventional SMM
ecalculates all internal coupling coefficients of the com-
ined system using the above-described method. This
lassical algorithm is very inefficient and a main origin of
he computational limitation of the conventional SMM.
ur refined Redheffer star product relation of the cou-
ling coefficient matrices of the proposed SMM actually
vercomes this limitation. We can obtain the internal field
istribution very efficiently by the simple step described
n Eq. (21). Therefore the proposed SMM is a very effec-
ive tool for the functional block-based FMM.

In addition, our refined Redheffer star product relation
f the coupling coefficients enables the efficient parallel
inary-tree computation of the extended SMM. We can ef-
ectively exploit the parallelism of the proposed SMM by
dopting the parallel binary-tree scheme in the practical
omputation. Let us assume that the total number of the
odies of the multilayer N is N=K�M, where K is a posi-
ive integer and M is the number of nodes of the parallel
omputer used for the computation. In addition, the node
umber M is assumed to be M=2p. In this configuration,
e can divide the multilayer structure into M blocks com-
osed of K layers as shown in Fig. 7. Since the parallel
omputer has M CPUs, the mth CPU in the parallel com-
uter should calculate the S-matrix of the mth block in a
erial manner. After achieving the characterization infor-
ation of all blocks using the extended SMM, we can

ombine the S-matrices and the coupling coefficient ma-
rix operators of all blocks by using the binary-tree ap-
roach. For a systematic description, let the index sets be
efined as

Fig. 6. Functional block-based FMM.
Mp = 	m�p��m�p� = 1,2,3, . . . ,2p
 for p = 0,1, . . . ,log2 M,

�45�

nd let the S-matrix and the coupling coefficient matrices
f m�p� be denoted by S̃�p�

�m�p��, C̃a,�p�
�m�p��, and C̃b,�p�

�m�p��. At the first
tage, the �2m�p�−1�th block and the �2m�p��th block are
ombined in to a single block. After the combination, the
ndex set is changed to Mp−1. The constructed block is de-
oted by the �m�p−1��th block in the index set Mp−1. The
otal number of blocks is 2P−1. This process is denoted by

S̃�p−1�
�m�p−1�� = S̃�p�

�2m�p�−1�
� S̃�p�

�2m�p��, �46a�

C̃a,�p−1�
�m�p−1��,C̃b,�p−1�

�m�p−1���

= �C̃a,�p�
�2m�p−1�−1�,C̃b,�p�

�2m�p−1�−1�� � �C̃a,�p�
�2m�p−1��,C̃b,�p�

�2m�p−1���. �46b�

y p iterations of the recursion equations, we finally ob-
ain the total S-matrix of the multilayer body S�1,N�

�=S̃�0�
�1��. It is noted that this parallel binary scheme for

btaining the coupling coefficient matrices cannot be con-
tructed within the conventional SMM, since in the con-
entional SMM the computation of the coupling coeffi-
ients is an independent postprocessing after finding the
otal S-matrix, and so its algorithm structure cannot be
istributable on the binary-tree structure. However, in
he proposed SMM, through the Redheffer star product
elation of the coupling coefficient matrices, the parallel
inary-tree computation is naturally adopted for obtain-
ng the coupling coefficient matrices. Regarding the

emory requirement on the parallel computing environ-
ent, the construction of the necessary partial S-matrices

n the conventional SMM does not have advantages over
he proposed SMM, since each partial layer requires its
wn memory containing all primitive S-matrices of single
ayers for calculating its own specifically formed S-matrix
air.

. NUMERICAL RESULTS
n this section, the RCWA examples of the proposed SMM
nd the ETMM are compared to prove the validity of the

ig. 7. Multilayer structure divided into M blocks containing K
ayers.
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roposed SMM. We examine the RCWA results of the
hree-dimensional circular dielectric fiber-tip structure
hown in Fig. 8(a). The original continuous structure is
pproximately modeled by the staircase multilayer struc-

ig. 8. Example target structure: (a) dielectric fiber tip, (b
pproximation.

ig. 9. (a) First selected input mode profile (in the x–y plane), (b
nput mode profile (in the x–y plane), (d) excited electric field di
ure of 16 layers as shown in Fig. 8(b). The first layer is
he half-infinite circular fiber structure, and the last layer
s the half-infinite free space. Thus the body of the tip is
omposed of 14 layers. In this example, the wavelength of

ilayer structure modeling of the fiber tip with the staircase

d electric field distribution (in the z–x plane), (c) second selected
ion (in the z–x plane).
) mult
) excite
stribut
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he optical field is 632.8 nm, both the x-direction and the
-direction periods are 4 �m, the fiber diameter in the in-
ut region is 1.69 �m, the tip length is 8.75 �m, and the
efractive index of the fiber tip is 1.5. The numbers of the

ig. 10. (a) Coupling coefficients of the positive eigenmodes and
ode; (c) the deviation between the coupling coefficients of the po

eviation between the coupling coefficients of the negative mode

ig. 11. (a) Coupling coefficients of the positive eigenmodes an
nput mode; (c) the deviation between the coupling coefficients of
d) the deviation between the coupling coefficients of the negativ
-direction and y-direction transverse Fourier frequencies
sed in the RCWA are equally set to 15.
Since the input region is a circular fiber structure, we

an selectively choose the incidence mode profiles among

se of the negative eigenmodes excited by the first selected input
modes obtained by the proposed SMM and by the ETMM; (d) the
ned by the proposed SMM and by the ETMM.

hose of the negative eigenmodes excited by the second selected
sitive modes obtained by the proposed SMM and by the ETMM;
s obtained by the proposed SMM and by the ETMM.
(b) tho
sitive
s obtai
d (b) t
the po
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everal eigenmodes of the fiber structure. Figures 9(a)
nd 9(c) show the transverse electric field profiles of the
rst and second selected modes. The electric field distri-
utions in the vertical cross-section plane (in the x–z
lane) for the incidence of the first and second modes ob-
ained by using the proposed SMM are visualized in Figs.
(b) and 9(d), respectively. We can observe clear differ-
nces in the diffraction patterns of the electric fields of the
wo incidence modes.

In addition, the obtained results of the proposed SMM
re compared with those of the ETMM. The distributions
f the coupling coefficients cn,g

�0,15�+ and cn,g
�0,15�− for the first

ncidence mode obtained by the proposed SMM are plot-
ed in Figs. 10(a) and 10(b), respectively. These distribu-
ions are obtained from Eqs. (11e) and (11f). The coupling
oefficient distributions are also calculated with the
TMM for comparison. Then the deviations �cn,g

�0,15�+ and
cn,g

�0,15�− between the coupling coefficient distributions ob-
ained by the SMM and those by the ETMM are pre-
ented in Figs. 10(c) and 10(d), respectively. As a result,
e can see that the deviations are negligible and the re-

ult of the SMM agrees highly with that of the ETMM. In
igs. 11(a) and 11(b), the coupling coefficient distributions
btained for the second incidence mode through the same
anner are plotted. The deviations between the results of

he SMM and those of the ETMM are presented in Figs.
1(c) and 11(d). Also, in this case, the deviations are neg-
igible, and the result of the SMM agrees highly with that
f the ETMM. Furthermore, we can confirm that the cou-
ling coefficient matrix obtained by the SMM does totally
gree with that obtained by the ETMM. By these com-
arisons, the validity of the proposed scheme is proved.

. CONCLUSION
n this paper, an extended and refined SMM is proposed
or the efficient full parallel implementation of the FMM.
he motivation of this study is to overcome the computa-
ional limitation of the conventional SMM. The main re-
ult is the Redheffer star product relation of the coupling
oefficient operators and the following refinement of the

MM. In this paper, it is shown that the proposed SMM is
uccessfully applied to the RCWA. However, the proposed
cheme is so general that it can also be adopted in other
MMs using a multilayer-based structure modeling such
s the pseudo-Fourier modal analysis method. The com-
lete parallel implementation of the FMMs through the
roposed SMM is a requisite for the functional block-
ased Fourier modal analysis of various photonic circuit
tructures requiring large-scale parallel computation.
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