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Abstract: An optical implementation of iterative fractional Fourier 
transform algorithm is proposed and demonstrated. In the proposed 
implementation, the phase-shifting digital holography technique and the 
phase-type spatial light modulator are adopted for the measurement and the 
modulation of complex optical fields, respectively. With the devised 
iterative fractional Fourier transform system, we demonstrate two-
dimensional intensity distribution synthesis in the fractional Fourier domain 
and three-dimensional intensity distribution synthesis simultaneously 
forming desired intensity distributions at several multi-focal planes. 
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1. Introduction 

Diffractive optical element (DOE) is one of key elements in the complex optical information 
processing systems that can be used as phase and amplitude filters mainly for synthesizing 
desired optical field distribution or compensating wave-front aberrations [1-3]. Hence, one of 
the important related issues is the optimal design of DOEs. Usually, regarding the optical field 
synthesis, the pre-requisite computational design based on well-established theoretical models 
should be prepared ahead [4], and the practical implementation of the optical field synthesis 
system follows. However in the system which is hard to model numerically or whose 
numerical parameters change in real time, this process is incomplete in synthesizing desired 
optical field distribution. For dynamically compensating the aberration of a real system, the 
adaptive optical methods with feedback functions are required [5, 6]. These adaptive methods 
solve for the adequate phase profiles compensating the aberration. The more active method of 
synthesizing desired optical field distribution is the optical implementation of a DOE design 
algorithm in a real system. This optical implementation has advantages that DOE is designed 
optimally in the real system which may have a distributed aberration and that the additional 
feedback function is not demanded. 

The most popular algorithm for DOE design is the iterative Fourier transform algorithm 
(IFTA) [7-9]. When the optical system between a DOE and a specified image plane is 
represented by the fractional Fourier transform (FRFT) description, the algorithm may be 
referred to iterative FRFT algorithm. The iterative FRFT algorithm repeats a forward FRFT 
and an inverse FRFT with constraints on the input and output planes. In Fig. 1, the iterative 
FRFT algorithm is illustrated. By transforming the optical fields in the input and the output 
planes iteratively, the DOE profile and the diffraction image are improved gradually. The 
general iterative FRFT algorithm must be equipped with the proper constraints existing in the 
input and output planes. The hard constraint in the input plane can take into account the 
functional relationship between phase and amplitude modulations. The soft constraint 
produces the degrees of freedom for the optimization of DOE phase profiles, which is 
significantly influent on the convergence of the iteration. The iterative FRFT has distinctive 
feature that the inverse transform of the ath order FRFT is substituted for its complementary 
(2-a)th order FRFT. 
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Fig. 1. Iterative FRFT algorithm. 

The optical implementation of the iterative FRFT algorithm includes measuring and 
reconstructing the optical field as well as the optical implementation of a FRFT. The FRFT 
theory has been actively researched in the optical information processing fields [10-13]. The 
firmly established operator approach originated from the FRFT theory gives more systematic 
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management and insightful understanding of general complex optical information processing 
system that the simple use of the generalized Fresnel transform cannot provide [14-17]. The 
phase-shifting holography technique is the most important dynamic optical field measurement 
techniques using charge-coupled devices (CCDs) [18]. With the phase-shifting holography 
technique, the wave-front of diffraction fields generated in optical information processing 
systems can be accurately measured and additionally the reconstruction of measured optical 
field is possible using spatial light modulators (SLMs) with the electrical controllability. 

In this paper, as a prerequisite step for eventual realization of dynamic and adaptive 
optical field synthesis, an optical implementation of iterative FRFT algorithm is proposed and 
the convergence of this algorithm is studied. The ath order FRFT and its complementary (2-
a)th order FRFT are constructed optically. By combining two complementary systems and 
using the phase-shifting holography technique, the iterative FRFT algorithm is optically 
realized. The validity and feasibility of the proposed implementation is proven with some 
related experimental results. 

This paper is organized as follows. In Sec. 2, the optical implementation of FRFT is 
described. In Sec. 3, the optical implementation of iterative FRFT algorithm is proposed. In 
Sec. 4, experimental results are presented and discussed. In Sec. 5, conclusion and perspective 
are given. 

2. Optical implementation of fractional Fourier transforms 

The scheme of the iterative FRFT algorithm is composed of several parts. The forward FRFT 
and its inverse FRFT are basically necessary. The constraint functions at the input and output 
planes should also be devised so that they can be optically implemented. In this section, the 
optical implementation of FRFT is discussed. 

At first we should choose an implementation form of FRFT appropriate for our objective. 
The ath order two-dimensional fractional Fourier transform is defined by 

( ) ( ) ( ), , , , ,F u v K u v u v G u v du dvα α

∞ ∞

−∞ −∞

′ ′ ′ ′ ′ ′= ∫ ∫ ,    (1) 

where the integral kernel is defined by,  

for 2a m≠ , ( ) ( ) ( )( ) ( )2 2 2 2, , , 1 cot exp cot 2csc /2 cot
2 2 2a

a a a
K u v u v j j u v a uu vv u v

π π ππ π
⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′ ′ ′ ′ ′= − + − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

,   (2a) 

for 4a m= , ( ) ( ) ( ), , ,aK u v u v u u v vδ δ′ ′ ′ ′= − − ,                                                                                 (2b) 

for 4 2a m= ± , ( ) ( ) ( ), , ,aK u v u v u u v vδ δ′ ′ ′ ′= + + ,                                                                                    (2c) 

where m is an integer. The important properties of the fractional Fourier transform are the 
associative and the communicative properties as 

( ) ( ) ( )1 2 2 1 1 2a a a a a aF F f F F f F f+= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .    (2d) 

In general, paraxial optical system can be described with the well-defined FRFT. The ath 
order two-dimensional FRFT in optical system is defined by the linear integral transform 

( ) ( ) ( ), , , , ,F x y h x y x y G x y dx dy
∞ ∞

−∞ −∞

′ ′ ′ ′ ′ ′= ∫ ∫ ,                                              (3a) 

where the transform kernel is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

/ 2 2 2
2 2 2

csc / 2 2csc / 2
, , , exp exp cot cot

2 2
j

x y x ya aj a a
h x y x y e j xx yy x y

s M R s M M
π ππ ππ π π

λ
−

⎛ ⎞⎛ ⎞ ⎡ ⎤+ +⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟′ ′ ′ ′ ′ ′⎢ ⎥= − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦⎝ ⎠

. (3b) 
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The above kernel may be found in Ref. 13, and it maps a function ( ) ( ) ( )ˆ, 1/ / , /G x y s G x s y s′ ′ =  into 

[ ] ( ) ( )( ) ( ) ( )( )2 2 ˆ1/( ) exp / / , /asM j x y R G x sM y sMπ λ+ , where ( )ˆ ,aG u v  is the ath order two-dimensional fractional 

Fourier transform of ( )ˆ ,G u v . 
Let us consider the optical system shown in Fig. 2. This is an optical implementation of 

the cascade of the ath order two-dimensional FRFT and its complementary (2-a)th order 
FRFT. Form Eq. (2d) we see that the overall system is an FRFT with the order of 2 because 
a+(2-a)=2. Then, from Eq. (2c) we see that this overall system is just inversing the image in 
transverse coordinates from ( )1 1,G x y  to ( )3 3,F x y , which should be true because the overall 
system is a 4-f imaging system. A diverging spherical wave is incident on the filter denoted by 

( )1 1,G x y  and the optical field on the filter is Fourier-transformed to ( )2 2,P x y  that is given by 

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
1 1

2 2 1 1 2 1 2 1 1 1

2 2 2 2 2 2
2 2 1 1 2 2

2 1 2 1 1 1 1 1

2
, exp , exp

2
exp exp , ,

x yj
P x y j G x y j x x y y dx dy

f R f

x y x y x yj
j j x x y y G x y dx dy

f R R f R

ππ
λ λ λ

ππ
λ λ λ

∞

∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞+ ⎛ ⎞− ⎜ ⎟⎢ ⎥= − +⎜ ⎟
⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎡ ⎤+ + +− ⎜ ⎟⎜ ⎟ ⎢ ⎥= − − + +
⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠

∫ ∫

∫ ∫             (4) 

where, R is the radius of the spherical phase, with which the input optical field ( )1 1,G x y  is 
wrapped. 
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Fig. 2. Optical implementation of the ath order and its complementary (2-a)th order two-
dimensional FRFT. The incident optical field may be diverging, converging or normally 
incident to the input plane. 

    
Since we are of interest in the intensity distribution of the output optical field ( )2 2,P x y , the 

extra quadratic phase term ( )( )2 2
2 2exp j x y Rπ λ− + can be neglected in Eq. (4). Comparing Eqs. (3b) 

and (4), we can estimate the transform order and the scaling factor of the corresponding FRFT, 
respectively, as 

2
arccos

f
a

Rπ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

,                                                           (5a) 

2 2 2
4

2 2

R f
s

R f

λ=
− .     (5b) 

The second section of the total optical system in Fig. 2 indicated by the (2-a)th order 
fractional Fourier transform is similarly analyzed. To construct the (2-a)th order fractional 
Fourier transform, the converging phase factor ( )( )2 2

2 2exp / 'j x y Rπ λ+  must be multiplied by the 
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optical field ( )2 2,P x y , where 'R−  is the converging radius of curvature ( ' 0R > ). Then the 

optical field is Fourier-transformed to ( )3 3,F x y . The second stage is equivalent to the first stage 
except the sign change of the incident spherical phase factor. Then the transform order of the 
second stage can be found just by changing R  with 'R− : 

2
2 arccos

'

f
a

Rπ
⎛ ⎞− = −⎜ ⎟
⎝ ⎠

,    (6a) 

2 2 2
4

2 2

R f
s

R f

λ=
− .     (6b) 

As pointed out earlier, the overall system of Fig. 2 is a 4-f imaging system, i.e., the image 
( )3 3,F x y  is the same as ( )1 1,G x y  in Fig. 2 except the coordinate inversion. Hence the (2-a)th order 

FRFT, which is called a complementary transform for the ath order FRFT, can be considered 
as the inverse transform of the ath order FRFT. We can control the FRFT order a by adjusting 
the curvature R of the incident spherical field as can be seen in Eq. (5a). With changing the 
sign of the curvature of the incident spherical wave, we can realize the forward FRFT and its 
inverse FRFT in the same FRFT optic setup. This is an important factor to be made use of to 
optically implement the iterative FRFT algorithm. 

3. Optical implementation of iterative fractional Fourier transform algorithm 

In this section, the proposed optical implementation of the iterative FRFT algorithm is 
elucidated. The functional parts of the implemented system and the algorithmic equipments 
necessary for the iterative FRFT can be separately explained. 

Figure 3 shows the schematic of the implemented system. As indicated in Fig. 3, the 
system is composed of several functional parts of (a) the field measurement part using the 
phase shifting holography technique, (b) the 1st beam path with a negative lens for the ath 
order FRFT, (c) the 2nd beam path with a positive lens for the (2-a)th order FRFT, (d) the 4-f 
imaging system for matching the scaling factors between the CCD and the SLM, and (e) 
LabView-based system control unit. 

Coherent Verdi 5W Nd:YAG laser with wavelength of 532 nm is used as a light source. 
The field measurement part is composed of the piezo stage XYZ-38 of Piezosystem Jena and 
the CCD (KODAK MegaPLUS ES1.0/MV with 8 bit resolution) with the pixel size of 9 mμ . 
The optical field distribution is measured by the phase-shifting holography technique. 

The 1st and 2nd beam paths share an SLM composed of the liquid crystal device (SONY 
LCX016AL-6) with the pixel size of 24 mμ  and two polarizers placed before and after the 
liquid crystal device. To optimally control the phase modulation of SLM in the full range of 
2π , the rotation angles of the former and latter polarizers to the reference axis parallel with 
the SLM are tuned as 330�  at the input side and 10�  at the output side, respectively. Mechanical 
shutters (SIGMA KOKI 65GR) are used to switch the 1st and 2nd beam paths automatically. 
The 1st beam path and the 2nd beam path are corresponding to the ath order FRFT and the (2-
a)th order FRFT, respectively. In the 1st beam path a negative lens (denoted by NL in Fig. 3) 
is placed to wrap the phase profile on the SLM with the spherical phase of the radius R , and 
on the other side, in the second beam path, a positive lens (PL) is placed to provide the 
spherical phase of the radius 'R− . A pattern mask describing the target intensity distribution is 
placed on the 2nd beam path (the inverse transform).  
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Fig. 3. Optical implementation of the iterative FRFT algorithm. 

Especially, the optical field information measured by the CCD is transferred to the SLM 
after signal processing of the phase-shifting digital holography. Here the scale of the field 
distribution is magnified because the pixel size of the SLM ( 24 mμ ) is bigger than that of CCD 

( 9 mμ ). However, matching the scaling factors between the CCD and the SLM is necessary to 
correctly carry out the forward and the inverse FRFTs. The scaling factor mismatch will result 
in very complicated FRFT relation [5]. To avoid this difficulty, a 4-f imaging optic setup with 
magnification feasibility is employed for matching the scaling factors of the SLM and the 
CCD. By the 4-f imaging optics, the optical field represented on the SLM is adjusted to fit the 
scale of the CCD. 

The iterative FRFT algorithm is composed of several algorithmic parts: (a) the forward 
FRFT, (b) the inverse FRFT, (c) the hard constraint function in the input plane, and (d) the 
soft constraint function in the output plane. In addition, (e) the adjustable optics for 
controlling the spherical curvature of the incident spherical wave is necessary. With these 
equipments, we can perform the three-dimensional intensity distribution synthesis 
simultaneously forming desired intensity distributions at several multi-focal FRFT planes as 
well as two-dimensional intensity distribution synthesis in the fractional Fourier domain. 
Some experimental results are presented in the next section. 

Basically, the algorithmic flow chart of the iterative FRFT algorithm follows that 
presented in Fig. 1. However, in the optical implementation, additional steps of adding and 
subtracting spherical phase profile from the measured phase profile have to be inserted at 
every iteration step as shown in Fig. 4. At the first step, the initial phase profile in the input 
plane is obtained by the inverse transform from the patterned mask representing the signal 
domain, where the inverse transform is implemented by the (2-a)th order FRFT. At the 
following steps, the forward and the successive inverse transforms are conducted iteratively. 
The beam paths are selected by mechanical shutters to implement the ath order FRFT (1st 
beam path) and the (2-a)th order FRFT (2nd beam path) alternatively. That is, the ath order 
FRFT and the (2-a)th order FRFT in Fig. 1 are split into time sequential steps along the 1st 
and 2nd beam paths.  
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Fig. 4. Flow chart of the iterative FRFT algorithm. 

Between the steps the spherical phases are subtracted from the measured phase profiles, 
and at the following step the conjugate spherical phases are added to the phase profile 
encoded on the SLM, since the spherical phase with the small radius compared with the pixel 
size of the encoded phase profile cannot be correctly represented by the SLM. This problem 
results from a discrete sampling of the spherical phase.  

A soft clipping method is devised to realize the soft constraint in the output plane. For this, 
the inverse transform is conducted twice as shown in Fig. 5. First, the optical field on the 
signal area selectively filtered by the patterned mask is inversely transformed and next, the 
optical field on both the signal and noise areas is inversely transformed. Two inversely 
transformed field distributions are summed with specific weight factors. The ratio of the 
weight factors is controlled to be decreased as the iteration progresses. 

With this system, the DOE phase profile generating a wanted two-dimensional intensity 
distribution at the ath order FRFT domain can be attained through this iteration procedure. 
With additional control of the spherical curvature of the incident spherical wave, we can 
obtain different intensity distributions at different FRFT domains. Multiplexing several DOE 
phase profiles enable simultaneous generation of intensity distributions at several FRFT 
domains with different FRFT orders. In other words, two-dimensional intensity distribution 
synthesis in the fractional Fourier domain and three-dimensional intensity distribution 
synthesis simultaneously forming desired intensity distributions at several multi-focal planes 
can be realized in real time with the devised iterative FRFT system. 
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Fig. 5. Soft clipping in the iterative FRFT algorithm. 

  
Regarding the three-dimensional multi-focal intensity distribution synthesis, we can see 

that when the DOE with the phase profile obtained by the proposed system at the ath order 
FRFT domain is illuminated by a plane wave, the diffraction pattern is formed at the 
defocused plane. In Fig. 6, the transform of the wave wrapped with diverging spherical phase 
(denoted by dotted lines) to the focal plane is formulated as  

( ) ( ) ( ) ( )
2 2
1 1

2 2 1 1 2 1 2 1 1 1

2
, exp , exp ,

x yj
P x y j G x y j x x y y dx dy

f R f

ππ
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∞ ∞

−∞ −∞

⎡ ⎤⎛ ⎞+ ⎛ ⎞− ⎜ ⎟⎢ ⎥= − +⎜ ⎟
⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫   (7a) 

and the transform of the plane input wave (denoted by the solid line) modulated by 1 1( , )G x y to a 

dΔ  distance from the focal plane is formulated as  

( ) ( ) ( ) ( )2 2
2 2 1 1 1 1 2 1 2 1 1 1

2
, exp , exp .

j j d j
F x y x y G x y x x y y dx dy

f f f f

π π
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⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞− −Δ −⎪ ⎪= + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫    (7b) 

By comparing the integrands of Eqs. (7a) and (7b), the relation between the radius R  and the 
defocus dΔ  is given by 

                                                                  2 /d f RΔ = − .       (7c) 

Therefore, with several positive and negative lens pairs of radius R  and R− , we can design 
DOE phase profiles to generate diffraction images at distinguished image planes. Also, the 
obtained DOE phase profiles can be multiplexed to form three-dimensional multi-focal 
intensity distribution at several distinguished planes. 

 4. Experimental results 

In this section, it is demonstrated with experiments that the DOE phase profile is optically 
designed by the proposed implementation of the iterative FRFT algorithm. As mentioned in 
the previous section, the location of the output plane depends on the radius of the spherical 
phase used in the stage of performing the iterative FRFT algorithm. Figure 7(a) shows the 
improvement of diffraction images as the iteration progresses with the spherical phase of 
radius R = ∞  (i.e. a plane wave input). Figure 7(b) shows the improvement for the case in 
which the spherical phase of the radius 62R mm=  is used. In both cases, the focal length of the 
Fourier lens is set to 150f mm= . The FRFT order of the first case is 1 and the stagnation of the 
iteration is reached at the 16th iteration stage, where the ratio in soft clipping is set to zero. 
The FRFT order of the second case is a complex number 0.9746j and the stagnation of the 
iteration is arrived at the 7th iteration stage, where the ratio in soft clipping is set to zero. 
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Fig. 6. The relationship for the two transforms: input with the spherical radius R (dotted lines) 
and the plane wave input with the corresponding defocus dΔ . 

   

 

iteration= 7iteration= 7iteration=16iteration=16

(a) (b)  
Fig. 7. Improvement of diffraction images as the number of iteration increases in the iterative 
FRFT algorithm for the two conditions of the radius of the spherical phase: (a) R = ∞  (0.24 MB 
movie) and (b) 62R mm=  (0.13 MB movie). 

In our another experiment, four DOE phase profiles are designed with different patterned 
masks being applied with different spherical phases as shown in Fig. 8. Based on the principle 
of Fig. 6, by multiplexing obtained DOE phase profiles, the overall DOE can form desired 
intensity distributions at several different longitudinal locations simultaneously as shown in 
Fig. 9. Since the diffraction images are detected after the incident beam passes through the 
lens, the converging spherical phases are applied to designed DOE phase profiles. In Fig. 9, 
we see that diffraction images are changed with the change in the image-capturing location of 
the CCD. 

5. Conclusion 

With the devised iterative FRFT algorithm, we can design the DOE phase profile to generate 
two-dimensional intensity distribution in a certain defocused plane at a time without modeling 
the real system. The proposed technique is implemented in the almost fully optical way and 
we can simplify the processes such as measuring the real system parameters and encoding the 
DOE phase profile into the SLM. With the FRFT by an incident spherical phase profile, we 
show that the FRFT order at the lens focal plane is controllable and the amount of the defocus 
has a clear relationship with the FRFT order at the lens focal plane. We successfully realized 
an optical implementation of iterative FRFT algorithm with the aid of wave-optical 
engineering technologies like the SLM and the phase-shifting digital holography technique.  
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Fig. 8. Multiplexing four DOE phase profiles (a) the patterned masks and (b) the applied 
spherical phase profiles. 

 
Fig. 9. (0.88 MB movie) Diffraction images of the multiplexed DOE captured by a CCD as the 
capturing location is changed. 

With the FRFT language, the forward and the inverse transform are clearly defined and the 
optical implementation is also manageable. A noticeable engineering point in this work is the 
4-f imaging part for matching the scaling factors of the CCD and the SLM. By adjusting the 
spherical phase curvature, we can obtain the DOE phase profiles to generate diffraction 
images at several defocused planes. The experimental feasibility of multi-focal image 
synthesis using the simple DOE multiplexing method opens the possibility of shaping three-
dimensional volumetric intensity distribution synthesis in volumetric region by using a fully 
optical implementation setup.  

In short, we studied the optical implementation of an iterative algorithm and the 
convergence of the algorithm. Based on this work we will improve the adaptive optical field 
synthesis algorithm compensating the distributed aberration in a real time.  
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