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A pseudo-Fourier modal analysis method for analyzing finite-sized dielectric slabs with arbitrary longitudinal
permittivity and permeability profiles is proposed. In the proposed method, the permittivity and permeability
profiles are represented by the Fourier expansion without using the conventional staircase approximation. The
total electromagnetic field distribution inside a dielectric slab is a linear superposition of extracted pseudo-
Fourier eigenmodes with specific coupling coefficients selected to satisfy given boundary conditions. The pro-
posed pseudo-Fourier modal analysis method shows excellent agreement with the conventional rigorous
coupled-wave analysis with the S-matrix method. © 2006 Optical Society of America
OCIS codes: 050.0050, 050.1940, 050.1950, 050.1960, 260.1960.

1. INTRODUCTION

Many interesting optical structures such as layered dif-
fraction gratings, photonic crystal slabs, and more gen-
eral complex media® are commonly finite-sized dielectric
slab structures with specific permittivity and permeabil-
ity profiles. In analyzing dielectric slabs with arbitrary
permittivity and permeability profiles, the modal analysis
is a fundamental issue. In the modal analysis framework,
the internal eigenmodes distinguished by their own char-
acteristic eigenvalues are identified and their coupled dy-
namics are manifested. As a result, when an internal elec-
tromagnetic field distribution in a target structure is
excited by an external source, the excited internal electro-
magnetic field distribution can be represented by a linear
superposition of internal eigenmodes of the target struc-
ture. The coupling coefficient of an internal eigenmode in
the linear superposition implies an important physical
meaning.

For the past three decades, rigorous modal analysis
methods on grating structures have been investigated
persistently. Particularly, in cases of two-dimensional
surface-relief gratings without a longitudinal permittivity
variation along the direction (conventionally denoted by
the z direction) normal to the grating surface, the rigor-
ous coupled-wave analysis (RCWA)* is well established
for modal analysis.

Carefully inspecting the coupled differential equation
system in the framework of the classical RCWA, we can
find that when longitudinal permittivity variation exists
along the z direction, the formulation of the RCWA be-
comes a coupled linear second-order ordinary differential
equation system with nonconstant coefficients, which can-
not be handled with the conventional method. In this
case, to escape from the difficulty, the RCWA takes up the
S-matrix method that uses the staircase
approximation®® to represent the permittivity profile in-
side a dielectric slab. Therefore, for analyzing three-
dimensional structures, the combination of the RCWA

1084-7529/06/092177-15/$15.00

and the S-matrix method®’ is employed in general. The
staircase approximation of the longitudinal permittivity
profile is widely accepted in various grating analysis
problems.

However, Popov et a analyzed the limitation and
the validity of the staircase approximation in represent-
ing continuous grating profiles. They showed that the dif-
ferential method without the staircase approximation
gave more accurate results than the RCWA and the
S-matrix method using the staircase approximation.
Surely, the S-matrix method gives exact field distribution
solutions for the staircase permittivity structures. The
plane-wave expansion method (PWM) formulated by
Sakoda''? for analyzing reflection and transmission
characteristics of finite-sized photonic crystals did not use
the staircase approximation for modeling photonic crys-
tals. But Sakoda’s PWM showed poor convergence.

On the other hand, under the staircase approximation,
only local eigenmodes in each interval with no permittiv-
ity variation along the z direction can be identified. In our
viewpoint, the field representation under the staircase ap-
proximation cannot be truly modal analysis. An eigen-
mode must be identified by its specific eigenvalue. How-
ever, the field representation under the staircase
approximation does not have such an eigenpair.

In this paper, a pseudo-Fourier modal analysis (PFMA)
method without the staircase approximation is proposed
for the rigorous modal analysis of finite-sized dielectric
slabs with arbitrary permittivity and permeability pro-
files. In this paper, a prerequisite step that should be
manifested before describing the fully generalized theory
is addressed. Thus the proposed PFMA method is verified
for one-dimensional structures. However, it is elucidated
that the mathematical technique for one-dimensional
structures introduced in this paper will be straightfor-
wardly extended to three-dimensional structure analysis.
The fully generalized theory will be completed in a future

paper.
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This paper is organized as follows. In Section 2 continu-
ous representation of permittivity and permeability pro-
files in the RCWA scheme is accounted for. In Section 3
the convergence of the pseudo-Fourier representation of
the electromagnetic field is discussed and the main eigen-
value equation is formulated. In Section 4 the identifica-
tion and extraction of the eigenmodes and eigenvalues are
described based on the results of Section 3. In Section 5
the boundary conditions are discussed and the total field
distributions in finite-sized slabs are analyzed. The total
field distributions obtained by the proposed method are
compared with those obtained by the S-matrix method. In
Section 6 concluding remarks and the perspective on the
generalization of the proposed method to slab structures
with finite thickness and three-dimensional arbitrary per-
mittivity and permeability profiles are given.

2. CONTINUOUS FOURIER
REPRESENTATION OF PERMITTIVITY AND
PERMEABILITY PROFILES IN THE
RIGOROUS COUPLED-WAVE ANALYSIS
SCHEME

The coupled linear differential equation system of the
classical RCWA is reviewed. In the description of the
theory, vectors are underlined and matrices are under-
lined twice. In the classical RCWA scheme, the internal
electric and magnetic field distributions inside a grating
are expressed, respectively, as the following symmetri-
cally truncated Bloch mode expansions:

M N
E@y.2)= 2 X [Sum(@)x+S,m(2)y

m=-M n=-N

+8S, un(2)z]expljkymx + &y ny)],  (1a)

M N
. €0
Hx,y,2)=j\|— 2 2 [Uemn@)x+ Uy pn(2)y
- MO m=-M n=-N - -

+ U, yun(2)z]explj(ky mx + Ry )], (1b)

where &, ,, and k, , are the mth x-direction wave-vector
component and the nth y-direction wave-vector compo-
nent, respectively. They are given, respectively, by

kym=ky+mG, for —-M=m=M, (2a)

ky,=k,+nG, for(-N=n=N), (2b)

where G, and G, are the x- and y-direction grating vec-
tors, respectively. We substitute the field representations
in Egs. (1a) and (1b) into the following Maxwell equa-
tions,

VXE =jwMOM(x,yaz)(Hxx +Hyy +sz)7 (Sa)

VX H=-jwsex,y,2)(Ex+Ey+E,;z), (3b)

where ¢y and u are electric permittivity and magnetic
permeability in free space, and the permittivity profile
e(x,y,z) and the permeability profile u(x,y,z) take the
Fourier series forms, respectively, as
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2M 2N
e,y,2)= >, > Ena2)explimGx+nGy)],

m=-2M n=-2N

(4a)
2M 2N
pwxy,2)= X, D Bma2)expli(mGx +nGy)l.
m=-2M n=-2N
(4b)

Then the following coupled linear differential equation
systems are obtained:

dS, nn(2)
— = kOE lam—s,n—t(z) Ux,st(z) +jky,nSz,mn(Z),
dz st
(5a)
dS, un(2) B ,
T =- kOE /Lm—s,n—t(z)Uy,st(z) +ka,mSz,mn(z),
s,t

(5b)

-j
D Ement(2)S. 0 42) = kU ) = by nUin(2)],
0

s,t

(5¢)
dU, pun2)
it =Jky,nUz,mn(z) + kOE Em—s,n—t(z)sx,st(z)a
dz s,t
(5d)
AU, un(2) ‘
T == kOE sm—s,n—t(z)sy,s,t(z) +.]kx,mUz,mn(Z),

s,t

(5e)

_ -J
E /*Lm—s,n—t(Z)Uz,mn(Z) = k_[kx,msy,mn(z) - ky,nSx,mn(z)]-
s,t 0

(5%)

The coefficients in Eqgs. (5a)—(5f) are functions of the vari-
able z. As mentioned previously, the staircase approxima-
tion of e(x,y,z) and u(x,y,z) along the z axis enables the
coupled equation system to be approximated to the equa-
tion system with constant coefficients in each staircase in-
terval. The S-matrix method is a recursive matrix algo-
rithm used to match the boundary conditions at all
boundaries generated by the staircase approximation.

In this paper, we propose an analysis method for solv-
ing Egs. (5a)—(5f) without the staircase approximation. To
reveal the main concept of the proposed method, it is
enough to consider the cases of longitudinal one-
dimensional structures. The permittivity and permeabil-
ity profiles of a longitudinal one-dimensional structure
are given by &(z) and u(z), respectively. In this case the
coupled differential equation system of Eqs. (5a)—(5f) be-
comes simplified but the coefficients are z-dependent
functions.
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Fig. 1. Dielectric slab with arbitrary one-dimensional permit-
tivity and permeability profiles.

3. PSEUDO-FOURIER REPRESENTATION OF
EIGENMODES AND EIGENVALUE
EQUATION

In the case of a one-dimensional structure, the dielectric
structure is a slab with longitudinal permittivity and per-
meability profiles as shown in Fig. 1. Figure 1 shows a di-
electric slab of finite thickness d with arbitrary permittiv-
ity profile &(z) and permeability profile u(z) placed
between region I and region II. In this paper, both the per-
mittivity e(z) and the permeability w(z) are assumed to
satisfy the following relations:

1. (z) >0 and u(z) >0, which mean that the slab struc-
ture is made of dielectric material.

2. e(z) and w(z) are piecewise-continuous functions
bounded in the range of 0=z =d.

Let an incident wave Ej,. impinge from region I to the
dielectric slab. The incident wave is assumed to be a
plane wave with an incidence angle of 6, an azimuthal
angle of ¢, and a polarization angle of ¢ with free-space
wavelength \. The incident wave is represented as

Einc = (ijﬁ+ Uyy + Uzi)exp[j(kl,xx + klyy + kI,zZ)]a

(6a)
where U,, U,, and U, are given by

(U,,U,,U,) = (cos cos 0 cos ¢ —sin ¢sin ¢,
coS i cos fsin ¢ + sin i cos ¢,— cos Ysin 6),
(6b)

and kp,, kr,, and k;, are given by

(k1 x,k1y,k1 ) = (Rony sin 6 cos ¢,kony sin 6sin ¢,kon; cos 6),
(6¢c)
with ky=27/\ and np is the refractive index of region I.

The reflected and transmitted waves in regions I and II
are represented, respectively, as

EI = Einc + (Rxf+ Ryy + Rzz)exp[](kl,xx + kl,yy - kI,zz)]’
(7a)
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Epn=(Twx+Tyy + Tz)explj(kx + kuyy + ku(z - d))],
(7b)

where R,, R, R, are reflected wave components and T,
T,, T, are the transmitted wave components. To satisfy
the phase-matching conditions on the transverse plane
(z=0 and z=d), the wave-vector components hold the fol-
lowing relations:

k1, =ki,=konysin 6 cos ¢, (8a)
kyy =k, =konysin §sin ¢, (8b)

k1, =Fkonycos 6, (8¢)
ki, = (k2n% - k2n? sin® 0)V2, (8d)

where (ki1 y,kiry,k1,) is the wave vector in region II, and
ny is the refractive index of region II.

The internal electric and magnetic field distributions
inside the slab structure are given, from Egs. (1a) and
(1b), as

E(x,y,2) =[Sy(2)x +S,(2)y + S.(2)z]

X explj(kx + kyy)], (9a)

Hx,y,2) =j\ed mol Unl2)x + U, (2)y + U.(2)2]

X explj(kx + kyy)]. (9b)

Then the pseudo-Fourier representation of eigenmodes
in a dielectric slab is described. At first, the periodic ex-
tensions of the permittivity profile e(z) and the permeabil-
ity profile u(z), £(z) and [i(z), are defined, respectively, as

+o0

8z)=e(z)® D, 8z-nd), (10a)
iz) = pz) @ X, 8z-nd), (10b)

where ® denotes convolution. Figure 2 shows the periodic
extension &(z) of a permittivity profile £(z) with a funda-
mental period of d. In the periodic extension of the dielec-
tric slab with £(z) and i(z), any existing internal electro-
magnetic field can be represented by a linear
superposition of the pseudo-Fourier eigenmodes of the pe-
riodic extension from the Bloch theorem.'?!3

From the Bloch theorem, the pseudo-Fourier eigen-
modes of the electric and magnetic fields inside the peri-
odic extension of the dielectric slab are given, respec-
tively, by

£(z)

Z

d d d d

Fig. 2. Periodic extension of a finite-sized dielectric slab with
one-dimensional arbitrary permittivity profile.
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E)(2) = explj(kyx + kyy + k2)JEy(2), (11a)
Hy(2) = explj(kx + kyy + k2)[Hy2),  (11b)

where & denotes the wave vector (k,,k,,k,). Here k, is
considered as the eigenvalue of the pseudo-Fourier eigen-
mode (Ek(z),gk(z)). Since both E,E(z) and E@(z) are peri-
odic functions with a fundamental period d, they can be
approximately expressed by truncated Fourier series.
We introduce the asymmetrically truncated Fourier
representations of Ek(z) and Iilk(z). The asymmetrically
truncated Fourier representations of E @(z) and liI ’E(Z) with
2N +1 harmonic components, E}eN ™(z) and Q}QN M(2), are
expressed as - -

N+m
E;j“’")(z) = E (Ex,px + Ey,py + Ez,pz)exp(ijzz),
— p=—N+m - - -
(12a)
X €0 N+m _ _ B
HY™@) =j\|— > (Hex+H,,y+H,,z)exp(ipG.z),
- MO p=-N+m - - -
(12b)

where m is an integer in the range —-N =m =N, the recip-
rocal vector G, is given by 27/d, and the number of the
asymmetrically truncated Fourier representations of a
pseudo-Fourier eigenmode is just 2N +1 (see Appendix A).
By substituting Egs. (12a) and (12b) into Eqgs. (11a) and
(11b), the pseudo-Fourier eigenmode (E;(z),H(z)) for a
wave vector k is expressed by 2N+ 1 asymmetrically trun-
cated pseudo-Fourier representations as follows:

N+m

EN™(z) = explj(kx + kyy)] 2 (Ex,px + Ey,py + Ez,pz)

= p=—N+m - - -
X explj(pG, + kN"™)z], (13a)

o N+m

HN™(2) = explj(kx + k)| — E (H,px+H, py

= MO p=—-N+m - -
+H, ,2)explj(pG, + k™)z], (13b)
where kiN "M is an approximate value of &, in the asym-

metrically truncated pseudo-Fourier representation. Ac-
cording to the analysis on the uniform convergence of the
Fourier representation established by Li,'* we can see
that there exists a nonnegative integer pair (N, m"(IV))
satisfying the inequalities, i.e., the convergence criteria;

Ex@) - EN™ @) < op,  |Hye) -HY "™ (@) < og,

|k, - k™| <y, (14)

where N=N" and |m|=m"(N)=N is satisfied for small
positive real numbers o, oy, and oy, and &, is a true ei-
genvalue of the true pseudo-Fourier eigenmode
(Ep(2),H}(2)). Additionally assuming that the envelop

profile of the pseudo-Fourier mode [E,E(z) ,lil ’E(Z)] is nearly
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band limited, we can confirm that there definitely exist fi-
nite positive integers N* and m”(N).

According to the convergence criteria of inequalities
(14), the asymmetrically truncated Fourier representa-
tions of a pseudo-Fourier eigenmode, Eqs. (13a) and (13b),
can be classified into three classes as indicated in Fig. 3.
Figure 3 shows the discrete distribution of the Fourier co-

efficient Ex,p (or Ey,p) in the Fourier space. The first class
[denoted by (i) in Fig. 3(a)] indicates that the total num-
ber of used harmonics, 2N+1, is larger than the lower
bound 2N+ 1, but the shift index m is outside the conver-
gence range [-m”,m"]. The third class [denoted by (iii) in
Fig. 3(b)] shows the deficiency of harmonic components
used in the pseudo-Fourier representation. But the sec-
ond class [denoted by (ii) in Fig. 3(a)] satisfies the conver-
gence criterion of inequalities (14). It is expected that
with enough harmonic components in the pseudo-Fourier
representation, a few in class (iii) having a large shift in-
dex m satisfying [m|>m" are considerably different from
the others included in class (ii). Also, it is expected that
the representations belonging to class (ii) would produce
an almost similar field profile and almost the same eigen-
value kiN m) according to the convergence criterion of in-
equalities (14). This point will be definitely manifested
through numerical simulations in Section 4.
Conclusively, we can see that classes (i) and (iii) cannot
correctly represent the true pseudo-Fourier eigenmode
because of significant loss of nonzero high-frequency har-
monic components, while class (ii) correctly expresses the
true pseudo-Fourier eigenmode. In addition, the total
number of Fourier representations precisely describing
the true solution [that is, satisfying the convergence cri-
terion of inequalities (14) and belonging to class (ii)] is
2m”(N)+1. The other 2(N—m"(N)) representations do not
satisfy the convergence criteria of inequalities (14).

(i) [-N+m,N +m] (|m]>m")

(it)[-N +m, N +m)] (lm| Sm')

0 N : P
—
Fwn (v
(b)
Fig. 3. Classification of 2N+1 pseudo-Fourier representations

of the pseudo-Fourier eigenmode according to the convergence
condition.
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On the other hand, the pseudo-Fourier eigenmodes,
Egs. (13a) and (13b), must satisfy the following Maxwell
equations:

VXE=jouyuz)(Hx+H W +H z) (15a)

VXH= —Jweos(z)(Exx+ y+E 2), (15b)
where the periodic extensions of the permittivity and the
permeability profiles &(z) and f(z) take the Fourier series

form as

2N

8z)= >, &, exp(iG.g2),
g=—2N

(16a)

2N
fz)= > Figexp(iGg2).

g=—2N

Let #N™+pG, denoted by k,, as k,,=

(16b)

kN 4pG;
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N+m ka B .]ky B
2 p—sEz s = k Hy,p + k_Hx,pa (170)
s=—N+m 0 0
N+m
JRep ~ k.
he How= %m peobins t o ey (179)
Jhep L ke
e o= % RN NI k—OH . (17e)
=-N+m
N+m B N _jkx B jky B
E lu'p—st,s = k Ey,p + k_Ex,pa (17f)
s=—N+m 0 0

where the integer indices s and p are in the range of -N
+m=s and p=N+m. The algebraic equation system of
Eqgs. (17a)—(17f) can be manipulated as a matrix form. For
this, the following notations are adopted.

The Toeplitz matrices g of &, and u of i, are defined,
respectively, as B

then by substituting the pseudo-Fourier representations &0 &1 €-on
of Egs. (13a) and (13b) into Maxwell’s Eqgs. (15a) and =h o E_oNs1
(15b), Maxwell’s equations are translated into the alge- e=| . . ) (18a)
braic equation system of the Fourier coefficients of Egs. N B ’ B
(13a) and (13b) as €N 8an-1 €
N+m ~ ~ ~
- = . = Mo M-1 M_2N
JkZP y.p kO E ’MP—SHJC,S +JkyEz,p7 (17a) ,ZL ,ZL I_L
s=—N+m = .1 -0 —2N+1 - (18b)
N+m ~ ~ ~
k. _h 2 i sH +jk, 7 (17b) MoN M2N-1 Mo
J , 0 - )
o sNem o G.INm KN K, K,, and K, are defined, respectively, as
(-N+m)G,
_— 0 0
ko
(-N+m+1)G,
. 0 _— 0
QZ‘—]‘\"’TM = kO 5 (18(3)
: 0
(N+m)G
0 0 -7
ko
[
I={Z|I—V1T7Tm = (ngym)/kO)i + gz|]_\’&:—nm, (18d) ?y‘]—vﬁfm = [Ey,—N+m Z'jy,—N+m+1 E‘y,N+m]t,
19a
I_{y = (ky/kO)l? (186) ( )
where [ is the (2N+1) X (2N +1) identity matrix. The vec- :x —N+m = [Ex,—N+m Ex,—N+m+1 E'x,N+m]t’
tor notations E,[Ny7,, E [Ny HMNym | and H [T, are (19b)

defined, respectively, as
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sz Z_V&:ﬂm = [gx,—NHn ﬁx,—N+m+l e ﬁx,Nﬂn]t’
(19¢)

Ey Z—\,K/Tm = [Fly,—NHn gy,—N+m+1 e ﬁy,N+m]t'
(19d)

Then, with use of the above notations, the algebraic equa-
tion system of Eqs. (17a)—(17f) is rewritten as

TR KBy X = L+ JE B, (20a)
T B = = L | +JEE| N, (20b)
-JG. I—VIGTm 0 I={y£_ll={x
0 -JG. ]—VI\J;'Tm —pt I={x§_11={x
K,u 'K, e-K,u 'K, —JG |
—&+ I=<xf_/‘_ll={x - =x/_/‘_ll={y 0

The reciprocal permittivity profile a(z) and the reciprocal
permeability B(z) are defined, respectively, as

2N

= E a, exp(jG,gx),

g=—2N

alz) = (22a)

£(2)

2N

= 2 Bgexp(szgx).

1&(2 ) g=-2N

Bz) = (22b)

Then their Toeplitz matrices o and g are taken, respec-
tively, as h
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E,Nm = - JK, K H, [N 20
g_z “N+m = ~J& xHy N+m +J=y_x -N+m> ( C)
TNy | N = FE L+ 2B SR (20d)
TSt L = = B [ + KL, (200)
glzz ]—VI\-;Tm = _jI={xEy N;\;'Tm +JK E ]—VIGTm (20ﬂ

The algebraic equation system of Eqgs. (20a)—(20f) is con-
sidered as the following matrix eigenvalue equation of
(8N +4) X (8N +4) dimensions:

N =N
IL_‘L I_{y__ll={ E |—I-\+7Tm Eyl—&:nm
- I={x§_11={y Ex ]—VITITm .kéN’m) Ex IYICYT’" (21)
- N == _ N .
0 F_Iy|—l-'\}:—nm k() Iiy|—1-\;Tm
—igPim |\ 7 e 2.
= I_{x|—N+m Iix|—N+m
[
& a_q oy
ay ay A_oN+1
a= . -, (23a)
| oy g1 &
Bo B Boon
B= [?1 ,3.0 B-an+1 (23b)
| Bon Bon-1 Bo

According to Lalanne and Morris’s and Li’s previous
works on the convergence of the Fourier
representa‘cion,3’14 a is substituted into g‘l in Eq. (21) to
obtain the stable convergence of the pseudo-Fourier rep-
resentation. Thus, the main eigenvalue equation reads as

—JG. |50 0 K, oK,
0 -JG. % - p+ KoK,
I={y=1={x g€~ =yé=y _jgz ]—\’Z-\'}:—nm
—&t I={x:[_31={x x[_;[={y 0
Here, ®"™ and [E,[Nyr, ENvm, HPNm, BN Y

are identified as an eigenvalue and an eigenvector,

respectively. Considering Eqs. (13a) and (13b), we
can see that the eigenvector
[Ey ]—\]I*\}Tm Ex ]—VI:’Tm Iz}’ ]:]Z;Tm Ex I—\]I*\}Tm]t corresponds to a

| N+m I |[N+m
p-K oK, || Evl-nin Ey|-Nem
B 7 |N+m (N,m)| 77 |N+m
- _y‘_II_{y Ex -N+m ,kz Ex -N+m (24)
~ =J ~ .
N+m N+m
0 Ey|—N+m ko I_{y|—N+m
_.]G N]-\'.]m 7 |N+ 77 |N+
|- m m
m Hx|—N+m I_{x|—N+m

pseudo-Fourier eigenmode, (@N’m)(z),I_JEEN’m)(z)), which
can be distinguished by its own eigenvalue denoted by
BN,

’ On the other hand, from Eq. (18¢), the matrix Eq. (24)
is arranged as
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_j(=;2|z—\’N 0 K,aK, ~= KoK,
0 -jG.Yy  -p+KaK.,  -K.gK,
I=<y£I={x [ I={y:[=gl={y -JjG. |I—VN 0

-s+K.pK.  -K.pK, 0 -JG|"y
B %, B %,
BJSE, | (W9 mG,\ | BN,

| 5 vm |7 ) 7 e (25)

Ey|—N+m 0 I;Iy|—N+m

As proven in Appendix A, the number of nontrivial
pseudo-Fourier representations of a pseudo-Fourier
eigenmode is 2N+1. We can consider the corresponding
2N +1 nontrivial vectors [Ey%N E 2N Izy%N H|3NY

o [Ey|(_)21v E %y Ey|92N H, %] as the eigenvectors
of the following eigenvalue equation:

_jQZ|Z—VN 0 I=(ygl={x = I={ §I=<y
0 -jG[%  -p+EKoK,  -K.aK,
I={yEI={x £g- I={y=l={y -JG. ]—VN 0
- § + I={x£I={x - =x[=;l={y 0 _jgz|1—\[N
Ey Ey
E, E,
X\ = =8 -7 | 2
AN (26)
H, H,

Their own B eigenvalues are identified, respectively, as

—jkoB=kN N L NG,, ... kNN _NG,. (27
These 2N +1 nontrivial eigenvector—eigenvalue pairs are
approximate pseudo-Fourier representations of a true
pseudo-Fourier eigenmode with eigenvalue %,.

On the other hand, the dimension of the matrix in Eq.
(26) is (8N+4)X(8N+4). The number of nontrivial
eigenvector—eigenvalue pairs of Eq. (26) is 8N +4. There-
fore just four different pseudo-Fourier eigenmodes can be
identified in the scheme of Eq. (26) because 8N +4 eigen-
pairs are classified into each homogeneous group com-
posed of 2N+1 eigenpairs. Physically, this means that
only four pseudo-Fourier eigenmodes exist in the periodic
extensions of dielectric slabs with £(z) and a(z).

To correctly distinguish the four pseudo-Fourier eigen-
modes among 8N +4 eigenvector—eigenvalue pairs of Eq.
(26), the wavenumbers in the first Brillouin zone must be
extracted from each obtained eigenvalue. Explicitly the

wavenumber in the first Brillouin zone, Blst Brill, can be
extracted by the following formula:

Bist Brinl = B - G[(Im(B) + 0.5G,)mod(G,)],  (28)

where Im(7) indicates the imaginary part of a complex
number 7. If m=(Im(B)+0.5G,)mod(G,) is satisfied, the

first Brillouin zone wavenumber Elst Brin and its corre-
sponding eigenvector [E, E, H, H,|' are identiﬁed

: v |N+m I |[N+m r7 |N+m N+m ¢t
respectively, as [E,7, Efyn, HMNm, BN
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and k(ZN ™1t is reasonable to select the symmetric repre-
sentation (Egv ’0)(2) ,I;I;N ’0)(2)) among 2m"(N)+1 pseudo-
Fourier representations of a pseudo-Fourier eigenmode in
class (ii) to construct the pseudo-Fourier eigenmode
(Eq4(2),Hg(2)). Here, for the convenience, the mode index
is denoted by g instead of k. Then the mode selection rule
is simplified. We just select the individuals satisfying the
following relation among the obtained 8N +4 eigenvalues
[see Eq. (28)]:

(Im(B) + 0.5G,)mod(G,) = 0. (29)

It is confirmed that the number of individuals satisfy-
ing that condition is exactly four. Conclusively we can eas-
ily identify four pseudo-Fourier eigenmodes with the
method described above.

4. PSEUDO-FOURIER EIGENMODE
EXTRACTION

To validate the theory described in Section 2, we present
two illustrative examples. Figures 4(a) and 4(b) show a 4\
thickness dielectric slab with longitudinal continuous per-
mittivity and permeability profiles, and a 4\ thickness di-
electric slab with longitudinal discrete permittivity and

= Permittivity
=== Permeability |-

0 0.5 1 1.5 2 2.5

35¢

25¢)

151

u = Permittivity
=== Permeability

051

0 0.5 1 1.5 2 2.5
6
z (Il’l) x 10
(b)

Fig. 4. Dielectric structure with thickness of 4\ and (a) longitu-
dinal continuous permittivity and permeability profiles and (b)
longitudinal discrete permittivity and permeability profiles.
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permeability profiles, respectively. In this section, the
pseudo-Fourier eigenmodes and eigenvalues of two com-
parative structures are extracted with the PFMA.

In the analysis, the plane wave, with incidence angle of
/4, azimuthal angle of 7/3, polarization angle of 7/4,
and unit intensity, is taken as the external incident
source. At first, the dielectric slab with continuous
permittivity and permeability profiles shown in Fig. 4(a)
is analyzed. Figure 5 shows the eigenvalue distributions
that are obtained by solving the main eigenvalue Eq. (26)
and folding the eigenvalues to the first Brillouin zone
with use of Eqgs. (27) and (28). In Fig. 5, the imaginary
part of jk;N ™ scaled by ko is plotted. If kiN ™ s a
pure real number, the corresponding eigenmode
(@N’m)(z),l;lgv (2)) is referred to as a nonevanescent
mode, while if the imaginary part of kLN M) is nonzero, the
corresponding eigenmode @ZN ’m)(z),I;I}eN () is referred
to as an evanescent mode. Figure 5(a) shows the eigen-
value distribution when the number of harmonic compo-
nents used in the pseudo-Fourier representation, 2N +1,
is 21. As indicated in Fig. 5(a), the convergence of the ei-
genvalue is not perceived due to the insufficient number
of Fourier harmonic components. According to the classi-
fication rule of the pseudo-Fourier representations, all
representations used in this case are included in class
(iii). On the other hand, Fig. 5(b) illustrates the case in
which a sufficient number of harmonic components (2N
+1=129) are used in the field representation. As seen in
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Fig. 5. Analyzed eigenvalue distributions in the first Brillouin
zone of the dielectric slab with continuous permittivity and per-
meability profiles when (a) N=10 and (b) N=64.
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Fig. 5(b), four flat portions appear in the eigenvalue dis-
tribution plot. It is noted that there exist unflat transition
regions between adjacent flat intervals, i.e., nonconver-
gent eigenvalues. The Fourier representations corre-
sponding to the flat portions belong to class (ii), but those
corresponding to the nonconvergent eigenvalues are clas-
sified into class (i).

Among the convergent pseudo-Fourier representations,
four symmetric representations, (Egv ’0)(2),I;I;N ’0)(2)), are
selected for building the gth pseudo-Fourier eigenmode
(Eq4(2),Hg(2)) that can be extracted with the use of Eq.
(29).

Considering the eigenvalue distribution in Fig. 5(b), we
can understand that two pseudo-Fourier eigenmodes,
(E1(2),Hq(z)) and (Eq(2),Hy(z)), propagate backward
along the z direction and are orthogonally polarized to
each other. The other pseudo-Fourier eigenmodes,
(E3(2),H3(z)) and (E4(2),H4(2)), are also orthogonally po-
larized to each other and propagate forward along the z
direction. From the symmetry of the eigenvalue distribu-
tion, we can see that (E;(z),H;(z)) is the conjugate mode
of (E4(z),H4(2)), and (Ey(z),Hy(2)) is the conjugate mode
of (E3(2),Hs(z)). Figure 6 illustrates the field distribu-
tions of the four extracted pseudo-Fourier eigenmodes in-
side the dielectric slab, (E(2) ,H1(2)), ..., (E4(2),H4(2)). In
the case of the continuous structure, four scaled eigenval-
ues (scaled by —jkq for convenience) are obtained, respec-
tively, as jk"/ko=-0.0767j, jk®/ky=-0.0483j, jk¥/k,
=+0.0483j, and jkf)/koz +0.0767j. Thus all extracted
pseudo-Fourier eigenmodes are nonevanescent modes.

However, in the second example of the dielectric slab
with discrete permittivity and permeability profiles
shown in Fig. 4(b), all four extracted pseudo-Fourier
eigenmodes are evanescent modes. Especially it is noted
that the analytic Fourier representations of the discrete
permittivity and permeability profiles provided in Appen-
dix B should be used in the calculation to achieve high ac-
curacy.

Figure 7(a) shows the eigenvalue distribution for the
discrete case when the number of harmonic components
used in the pseudo-Fourier representation is insufficient
(2N+1=21), while Fig. 7(b) shows the convergent eigen-
value distribution with use of sufficient harmonic compo-
nents (2N +1=129). Figure 8 illustrates the field distribu-
tions of the four extracted pseudo-Fourier eigenmodes
inside the dielectric slab, (E;(z),H1(2)), ..., (E4(2),Hy(2)).
In this case, the extracted eigenvalues are obtained, re-
spectively, as jk\"/ko=-0.0205, j&?/ky=-0.0163, jk¥/k,
=+0.0163, and jk'*/ko=+0.0205. Thus all extracted
pseudo-Fourier eigenmodes are evanescent modes. This
point is definitely indicated in the eigenvalue distribution
illustrated in Fig. 7(b). When a sufficient number of har-
monic components (2N+1=121) are used in the field rep-
resentation, as seen in Fig. 7(b), a wide flat portion ap-
pears near the center axis since all eigenvalues are pure
imaginary numbers. Inspecting the distribution of
ReUk;N ’m))/ko, we can see that the eigenvalues in the cen-
ter flat portion are pure real numbers. That means that
the flat portion includes four independent evanescent
eigenmodes. It is noted that the evanescent modes
(E1(2),H1(2)) and (E5(z),Hy(2)) are exponentially decreas-



Kim et al.

£, (2)]
?
50

0% 1 2 04 1 2
z(m) x10% z(m) = 10°
08 05
07
= = o4
S 06 S
5 %03
X s X
e 02
03, 1 2 01, 1 2
z(m)  x10° z(m) x10°
(@)
1 0.8
o.8 0.6
ki? 0.4 r:.';“‘
Y 02
‘0 2 0 2
z(m)  x10¢ z(m)  x10°
08 15
_ 8.6 =1
2 2
= 0.4
iR Eos
0.2
‘0 1 2 ‘0 1 2
z(m) x10°* z(m)  x10°

(©)

Fig. 6.

Vol. 23, No. 9/September 2006/J. Opt. Soc. Am. A 2185

1 0.8
08 Ay
N 0.6 N
L] » 0.
K04 M
02 0.2
0 1 2 0 2
z (m) x10° z (m) x10°¢
0.8 15
0.6 —
o) = !
3z 0.4 3
o o X8
‘0 1 2 ‘0 2
z(m) x10°¢ z(m) 10
0.7 14
0.6 12
§ 0.5 ~ 1
S e
uf 04 of 08
0.3 0.6
02, < - 0.4 : %
z(m) x10° z(m) x10°
0.8 0.5
0.7

0.6

|H 4y (ZH

i :
He. (2)
5 & >

)
e

0.5
0.4

0.3 0.1
z (m) x10

d

&

1 2
z(m) x10°

Extracted pseudo-Fourier eigenmodes of the dielectric slab with continuous permittivity and permittivity profiles: (a)

(Ey(2),H,(2)) with jkM/ko=-0.0767], (b) (Es(2),Hy(2)) with j&®/kg=-0.0483j, (c) (Es(z),Hs(2)) with j&®/ky=+0.0483], (d) (E4(2),H,(2))

with j&*/ky=+0.0767;.

ing along the z direction, but the evanescent modes
(Es(z),Hs(z)) and (E4(z),Hy(z)) seem to be exponentially
increasing along the z direction. The exponentially in-
creasing evanescent mode may be somewhat unphysical,
but these increasing evanescent modes play a role in rep-
resenting the real evanescent field near the backside
boundary (z=d) of the finite structure.

5. BOUNDARY CONDITION AND TOTAL
FIELD DISTRIBUTION

In Sections 3 and 4, the four pseudo-Fourier eigenmodes
are identified for the periodic extension of a unit slab
structure with finite thickness and longitudinal arbitrary
permittivity and permeability profiles. In this section, on
the basis of the theoretical analysis on the pseudo-Fourier
eigenmodes, the calculation of the total electromagnetic

field distribution inside finite dielectric slabs is ad-
dressed. For the validity of the proposed PFMA method,
the numerical results of the PFMA are compared with
those of the conventional RCWA and S-matrix method.

The main principle is that the total electromagnetic
field distribution inside a dielectric slab can be repre-
sented by a linear superposition of extracted pseudo-
Fourier eigenmodes with appropriate coupling constants
to satisfy given boundary conditions. Thus the total elec-
tric field distribution E and magnetic field distribution H
are expressed, respectlvely, as

'S

4
E=, C,E,(z)=explj(kx +ky)]> C [ > (E(g)x +Ey
= =, pt Y

g=1

+ Efllg)exp(ipGZZ)} exp(jk.z2),  (30a)
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Fig. 7. Analyzed eigenvalue distributions in the first Brillouin
zone of the dielectric slab with discrete permittivity and perme-
ability profiles when (a) N=10 and (b) N=64.

4 4 N
0 -
H=Y, CH,2) =expljlkx + ky) | —2 Cgl > HEx
g=1

&

Mog=1 p=—N
H®y + HOz) pG.2) ik, .2)
+Hy + H 2)exp(jpG.z) |exp(ik, ¢2),

(30b)

where C, is the coupling coefficient. The four coupling co-
efficients Cy, C,, C3, and C4 must be determined to satisfy
the boundary conditions specified at z=z_ and z=z, (z_
<z,). In fact, the field expressions of Egs. (30a) and (30b)
imply a general solution of the Maxwell Egs. (30a) and
(30b) inside a periodic extension of a unit permittivity
profile. This means that two boundaries, z=z_ and z=z,,
of the finite dielectric structure can be placed at any two
positions inside the periodic extension shown in Fig. 2.
The field expressions of Eqgs. (30a) and (30b) can be exact
total field distributions in the dielectric slab confined by
the two boundaries z=z_ and z=z,. The proper determi-
nation of the four coupling coefficients is only required to
satisfy the boundary conditions at the two boundaries. In
the cases of the finite dielectric slab shown in Fig. 1, the
first and the second boundaries are selected as z_=0 and
z,.=d, respectively,

The boundary conditions are described as follows. At z
=0, the transverse electric and magnetic fields must be
continuous. These conditions read as

Kim et al.

4 N
u,+R,= >, cg( > Ef;), (31a)
p

g=1 =N

4 N
ug+R.= >, cg( > Eff’;), (31b)
p

g=1 ==N

4

N
(ky e, — ko )ko + (= kiR, — kR )ko =], Cg< > Fly‘%;) :
p=-N

g=1
(31c)

4 N
(kyu, — Ry u)lko+ (RyR, + by R )ko=j>, cg< > ﬁg},).

g=1 p=—-N
(31d)

Using the aid of the transverse condition of the plane
wave

kR, +k,R,~k R, =0, (31e)

Egs. (831a)—(31d) are arranged in the following matrix
form:

1 0
u, 0 1
u, k.k, (k7 + k2 ( Ry)
+ - -
(kI,zux - kxuz)/ko kOkI,z kOkI,z Rx
(kyuz - kI,zuy)/kO (kf; + k%,z) kykx
kOkI,z kOkI,z
[~ N N N i
(1) (2) 77(3) (4)
2 Eyp 2 Eyp 2 Eyp 2 Eyp
p=-N p=-N p=—N p=-N
N N N N
2By 2 EY XEL X ES
p=—N p=—N p=—N p=—N
= N N N N
IS AL SSRGS AL S A
N N N N
JXHY, X HS X HY X H]
p=-N p=—N p=—-N p=—N
Cy
Cs
X C (32)
3
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with jk{"/ky=-0.0205, (b) (Ey(2),Hs(2)) with jk?/ky=-0.0163, (c) (E3(z),Hs(2)) with j&®/ky=0.0163, (d) (E(z),H,(2)) with jk*/k,

=+0.0205.

Next, at z=d, the continuation conditions of the trans-
verse electric and magnetic fields read as

4 N
T,=> Cg( > E¥)exp(j(k, 4 +pG.)d) ) (33a)

g=1 p=-N

4 N
T,=> cg< > Efexp(ik,, +pG, )d)) (33b)

g=1 p=-N

4
(kyy T~k T,) kg =j >, C ( > H

g=1 p=—N

&) exp(j(k, 4 + PG, )d)>

(33c)

4 N
(kyT, - by, T)/kg=j >, Cg( > HEexp(j(k, , +pGZ)d)).

g=1 p=-N
(33d)
Using the transverse condition of the plane wave
kT + k)T + Ry, T,=0, (33e)

Eqgs. (833a)—(33d) are arranged in the following matrix
form:
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[ 0
0
kyk, (R}, + D) (Ty)
kokir. kokrr. T,
(k2 + ki) kyk,
" kokn, ko
B N N
> EDexpilk, 1 +pGod) >, EZexplik, 5 +pG.)d)
p=—-N p=-N
N N
> EDexp(itk, 1 +pG)d) D, EZexpljlk, 5+ pG,)d)
p=-N p=-N
= N N
J > BYexp(ik,,+pGId)  j D, HZexp(ik, 5 +pG.)d)
p=-N p=-N
N N
7> BYexp(ik. +pGId)  j D, HPexpljk, 5 +pG.)d)
--N p=—N

The four coupling coefficients C;, Cy, C3, and C4 and the
reflection and transmission coefficients R,, R, T, and T,
can be obtained from Eqgs. (32) and (34). By this manner,
the total field distributions inside the dielectric slabs in
Figs. 4(a) and 4(b) are calculated. These are compared
with those of the RCWA with the S-matrix.

Total electric field distributions in the dielectric slab
with continuous permittivity and permeability profiles
calculated by the PFMA are illustrated in Fig. 9. The
y-directional electric field component E,(z) and the
x-directional electric field component E,(z) are presented
in Figs. 9(a) and 9(b), respectively. For the RCWA with the
S-matrix method, the continuous profiles of the permittiv-
ity and permeability are quantized to the multilevel stair-
case structure as shown in Fig. 10. In Fig. 11, the total
field distributions obtained by the RCWA with the
S-matrix method are presented. Comparing the field dis-
tributions in Figs. 9 and 11, we can see that the numerical
results obtained by the proposed PFMA method show an
excellent agreement with those of the conventional RCWA
with the S-matrix method.

Total electric field distributions in the dielectric slab
with discrete permittivity and permeability profiles calcu-
lated by the PFMA are illustrated in Fig. 12. The
y-directional electric field component E,(z) and the
x-directional electric field component E,(z) are presented
in Figs. 12(a) and 12(b), respectively. In Fig. 13, the total
field distributions obtained by the RCWA with the
S-matrix method are presented for a comparison. Com-
paring the field distributions in Figs. 12 and 13, we can
see that the proposed PFMA method shows an excellent
agreement with the conventional RCWA with the
S-matrix method in the case of discrete profiles.

6. CONCLUSION

In this paper, a PFMA method for analyzing finite-sized
dielectric slabs with arbitrary longitudinal permittivity
and permeability profiles without the staircase approxi-
mation was proposed. In the PFMA, the internal pseudo-
Fourier eigenmodes are extracted with specific eigenval-
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N N 7
> ESexplik.s+pGId) D, Eiexp(jk, 4 +pG.)d)
p=—N p=-N
N N
3 EOexp(jh.s+pGad) > Ebexp(jik, 4 +pGd) |[€1
p=-N p=—N Cy
N N CS ‘ (34)
i B explitk. 5 +pGod)  j >, Hiexp(i(k. 4 +pG.)d) |\ ¢,
p=-N p=-N
N N
J > B explitk, 5 +pG)d) >, Hexplilk, 4 +pG.)d)
=N p=-N

[
ues. The eigenvalues can be obtained by the eigenvalue
distribution analysis using the asymmetrically truncated
Fourier field representation. It was shown that the total
field distribution inside the finite-sized dielectric slab ex-
cited by an external plane wave can be precisely calcu-
lated by the linear superposition of four pseudo-Fourier
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Fig. 9. Total electric field distributions in the dielectric slab
with continuous permittivity and permeability profiles (a) E, (z)
and (b) E, (z) obtained by the PFMA.
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dimensional version) RCWA.
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Dielectric slab Region 11

eigenmodes with appropriate coupling coefficients satisfy-
ing the boundary conditions. The validity of the PFMA is
proved by the excellent agreement of the PFMA with the
conventional RCWA with the S-matrix method. The
mathematical techniques of dealing with longitudinal
permittivity and permeability profiles and extracting
pseudo-Fourier eigenmodes in the PFMA are general, so
they can be directly extended to analyze three-
dimensional structures. The pseudo-Fourier mode-based
representation of the internal electromagnetic field is
more precise and better in convergence than the simple
Fourier representation.’>'? The PFMA method is a com-

Vol. 23, No. 9/September 2006/J. Opt. Soc. Am. A 2189

plete modal analysis method for finite-sized dielectric
slabs with arbitrary three-dimensional permittivity and
permeability profiles.

APPENDIX A

Here it is proved that the number of the nontrivial
pseudo-Fourier representations of a pseudo-Fourier
eigenmode is 2N+ 1. For simplicity, only the permittivity
modulation is taken into account. A pseudo-Fourier mode
of the periodic series of the dielectric slab is substituted
into Maxwell’s equations as

V x [exp(i(k - 1)E] = jopuclexp(ik - r)H], (A1)

V < [exp(jk - r))H] = - jsos(e)[explilk - 1)E). (A2)

Let the dc terms of the permittivity profile, the electric
eigenmode, and the magnetic eigenmode be defined as fol-
lows:

d
8o= f e(z)dz, (A3)
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Fig. 12. Total electric field distributions in the dielectric slab
with discrete permittivity and permeability profiles (a) E,(z) and
(b) E(z) obtained by the PFMA.
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Fig. 13. Total electric field distributions in the dielectric slab
with discrete permittivity and permeability profiles (a) E,(z) and
(b) E.z) obtained by the S-matrix method and the (one-
dimensional version) RCWA.

d
E,= f E(2)dz, (A4)

Hy= | H()dz. (A5)

Next, using Eqs. (A3)—(A5), let the following manipula-
tion of the Maxwell Egs. (A1) and (A2) be performed:

V x [exp(j(k - 1))(E - Eo+ E)]

=joulexp(k -r)(H~Ho+Hy)l,  (A6)

V x [exp(j(k - r))(H - Hy + Hy)]

= - jogo[e(2) - 8o + Eollexp(j(k - 1)(E - Eo + E)].
(A7)

After further manipulation, we get
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V X [exp(j(k - 1)(E = Eq)] + V X [exp(j(k - ))E]

=jouolexp(i(k - r)(H - Ho)l + jouclexp(itk - r)H,,
(A8)

V x [exp(j(k - 1))(H - H)] +V X [exp(ji(k - 1))Ho]
= —jweoolexp(i(k - 1)(E - Eg)] - joeosolexp(j(k - 1)E]
— joe(e(z) - Eo)lexp(ilk - r)E]. (A9)
We can separate Eqgs. (A8) and (A9) into two parts as fol-
lows:
D)V x [exp(i(k - r)Eo] = jouolexp(i(k - r)H,],
(A10)

V X [exp(j(k - r))Ho] = = jweolexp(j(k - 1)) E],
(A11)

(i) V x[exp(i(k - r)(E -Eq)]

=joudlexp(k -r)(H-Hy)l,  (A12)

V x [exp(j(k - r))(H - Hy)] = - josgolexp(ik - 1) (E - Eo)]

- jweo(e(@) - E)lexp(jlk - 1) E].
(A13)

Part (i) must have a nontrivial solution. That means that
the representation of the electromagnetic field inside the
slab must include a dc spectrum that is not zero. Thus,
the total number of Fourier representations of the true
eigenmode is 2N +1 when the number of plane-wave com-
ponents is 2N + 1. Therefore, approximate representations
for exp(j(k-r)) =exp(j(ky ox+k, 0y +k; 02)) Tead as follows:
2N

EN@) = (E, x+E, .y +E, 2)exp(jpG.2),
= = * Y 2

k,=k, o+ AR, (A14)
2N-1
EN-D(z) = 2 (Ex,px +Ey,py + Ez,pz)exp(ijzz),
- ot o o <
k,=k, o+ ARND (A15)

1

E-N-D(z) = 2 (Ex,px + Ey’py + E’Z’pz)exp(ijzz),
- p=—(2N-1) - - B

k,=k, o+ Ak~ND, (A16)
0
ENz) = Z (Ex’px + Ey’py + E'Z,pz)exp(ijZz),

p=—2N

k,=k,o+AR7N. (A17)
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L=01 L, I, I,=d 2z
Fig. 14. Discrete permittivity profile with L homogeneous
layers.
APPENDIX B

The Fourier coefficients of a discrete permittivity (perme-
ability) profile can be analytically obtained as follows. The
discrete permittivity profile with L homogeneous layers is
described in Fig. 14. In each section, the thickness and
the permittivity value in the pth section are denoted by d,
and &), respectively. The boundaries between the adja-
cent pth layer and the (p+1)th layer are indicated by [,
and /,,,; as shown in Fig. 14. Then it is easily proven that
the periodic extension £(z) of the permittivity profile &(z)
is represented by the Fourier expansion

k=2N
2wk
gz)= > Eexplj—z], (B1)
k=-2N d

where the Fourier coefficient g, is given by

L zd

dk) ( mk
p%p P
g, = E —— sine| — |exp| —j—(,_ +l)). (B2)
YA d (d d P

Contact information for B. Lee, the corresponding au-
thor, is as follows: e-mail, byoungho@snu.ac.kr; phone, 82-
2-880-7245; fax, 82-2-873-9953.
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