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Pseudo-Fourier modal analysis on dielectric slabs
with arbitrary longitudinal permittivity and

permeability profiles
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A pseudo-Fourier modal analysis method for analyzing finite-sized dielectric slabs with arbitrary longitudinal
permittivity and permeability profiles is proposed. In the proposed method, the permittivity and permeability
profiles are represented by the Fourier expansion without using the conventional staircase approximation. The
total electromagnetic field distribution inside a dielectric slab is a linear superposition of extracted pseudo-
Fourier eigenmodes with specific coupling coefficients selected to satisfy given boundary conditions. The pro-
posed pseudo-Fourier modal analysis method shows excellent agreement with the conventional rigorous
coupled-wave analysis with the S-matrix method. © 2006 Optical Society of America
OCIS codes: 050.0050, 050.1940, 050.1950, 050.1960, 260.1960.
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. INTRODUCTION
any interesting optical structures such as layered dif-

raction gratings, photonic crystal slabs, and more gen-
ral complex media1 are commonly finite-sized dielectric
lab structures with specific permittivity and permeabil-
ty profiles. In analyzing dielectric slabs with arbitrary
ermittivity and permeability profiles, the modal analysis
s a fundamental issue. In the modal analysis framework,
he internal eigenmodes distinguished by their own char-
cteristic eigenvalues are identified and their coupled dy-
amics are manifested. As a result, when an internal elec-
romagnetic field distribution in a target structure is
xcited by an external source, the excited internal electro-
agnetic field distribution can be represented by a linear

uperposition of internal eigenmodes of the target struc-
ure. The coupling coefficient of an internal eigenmode in
he linear superposition implies an important physical
eaning.
For the past three decades, rigorous modal analysis
ethods on grating structures have been investigated

ersistently. Particularly, in cases of two-dimensional
urface-relief gratings without a longitudinal permittivity
ariation along the direction (conventionally denoted by
he z direction) normal to the grating surface, the rigor-
us coupled-wave analysis (RCWA)2–5 is well established
or modal analysis.

Carefully inspecting the coupled differential equation
ystem in the framework of the classical RCWA, we can
nd that when longitudinal permittivity variation exists
long the z direction, the formulation of the RCWA be-
omes a coupled linear second-order ordinary differential
quation system with nonconstant coefficients, which can-
ot be handled with the conventional method. In this
ase, to escape from the difficulty, the RCWA takes up the
-matrix method that uses the staircase
pproximation6–9 to represent the permittivity profile in-
ide a dielectric slab. Therefore, for analyzing three-
imensional structures, the combination of the RCWA
1084-7529/06/092177-15/$15.00 © 2
nd the S-matrix method6,7 is employed in general. The
taircase approximation of the longitudinal permittivity
rofile is widely accepted in various grating analysis
roblems.
However, Popov et al.9,10 analyzed the limitation and

he validity of the staircase approximation in represent-
ng continuous grating profiles. They showed that the dif-
erential method without the staircase approximation
ave more accurate results than the RCWA and the
-matrix method using the staircase approximation.
urely, the S-matrix method gives exact field distribution
olutions for the staircase permittivity structures. The
lane-wave expansion method (PWM) formulated by
akoda11,12 for analyzing reflection and transmission
haracteristics of finite-sized photonic crystals did not use
he staircase approximation for modeling photonic crys-
als. But Sakoda’s PWM showed poor convergence.

On the other hand, under the staircase approximation,
nly local eigenmodes in each interval with no permittiv-
ty variation along the z direction can be identified. In our
iewpoint, the field representation under the staircase ap-
roximation cannot be truly modal analysis. An eigen-
ode must be identified by its specific eigenvalue. How-

ver, the field representation under the staircase
pproximation does not have such an eigenpair.
In this paper, a pseudo-Fourier modal analysis (PFMA)
ethod without the staircase approximation is proposed

or the rigorous modal analysis of finite-sized dielectric
labs with arbitrary permittivity and permeability pro-
les. In this paper, a prerequisite step that should be
anifested before describing the fully generalized theory

s addressed. Thus the proposed PFMA method is verified
or one-dimensional structures. However, it is elucidated
hat the mathematical technique for one-dimensional
tructures introduced in this paper will be straightfor-
ardly extended to three-dimensional structure analysis.
he fully generalized theory will be completed in a future
aper.
006 Optical Society of America
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This paper is organized as follows. In Section 2 continu-
us representation of permittivity and permeability pro-
les in the RCWA scheme is accounted for. In Section 3
he convergence of the pseudo-Fourier representation of
he electromagnetic field is discussed and the main eigen-
alue equation is formulated. In Section 4 the identifica-
ion and extraction of the eigenmodes and eigenvalues are
escribed based on the results of Section 3. In Section 5
he boundary conditions are discussed and the total field
istributions in finite-sized slabs are analyzed. The total
eld distributions obtained by the proposed method are
ompared with those obtained by the S-matrix method. In
ection 6 concluding remarks and the perspective on the
eneralization of the proposed method to slab structures
ith finite thickness and three-dimensional arbitrary per-
ittivity and permeability profiles are given.

. CONTINUOUS FOURIER
EPRESENTATION OF PERMITTIVITY AND
ERMEABILITY PROFILES IN THE
IGOROUS COUPLED-WAVE ANALYSIS
CHEME
he coupled linear differential equation system of the
lassical RCWA is reviewed. In the description of the
heory, vectors are underlined and matrices are under-
ined twice. In the classical RCWA scheme, the internal
lectric and magnetic field distributions inside a grating
re expressed, respectively, as the following symmetri-
ally truncated Bloch mode expansions:

E�x,y,z� = �
m=−M

M

�
n=−N

N

�Sx,mn�z�x + Sy,mn�z�y

+ Sz,mn�z�z�exp�j�kx,mx + ky,ny��, �1a�

H�x,y,z� = j� �0

�0
�

m=−M

M

�
n=−N

N

�Ux,mn�z�x + Uy,mn�z�y

+ Uz,mn�z�z�exp�j�kx,mx + ky,ny��, �1b�

here kx,m and ky,n are the mth x-direction wave-vector
omponent and the nth y-direction wave-vector compo-
ent, respectively. They are given, respectively, by

kx,m = kx + mGx for − M � m � M, �2a�

ky,n = ky + nGy for �− N � n � N�, �2b�

here Gx and Gy are the x- and y-direction grating vec-
ors, respectively. We substitute the field representations
n Eqs. (1a) and (1b) into the following Maxwell equa-
ions,

� � E = j��0��x,y,z��Hxx + Hyy + Hzz�, �3a�

� � H = − j��0��x,y,z��Exx + Eyy + Ezz�, �3b�

here �0 and �0 are electric permittivity and magnetic
ermeability in free space, and the permittivity profile
�x ,y ,z� and the permeability profile ��x ,y ,z� take the
ourier series forms, respectively, as
��x,y,z� = �
m=−2M

2M

�
n=−2N

2N

�̃m,n�z�exp�j�mGxx + nGyy��,

�4a�

��x,y,z� = �
m=−2M

2M

�
n=−2N

2N

�̃m,n�z�exp�j�mGxx + nGyy��.

�4b�

hen the following coupled linear differential equation
ystems are obtained:

dSy,mn�z�

dz
= k0�

s,t
�̃m−s,n−t�z�Ux,st�z� + jky,nSz,mn�z�,

�5a�

dSx,mn�z�

dz
= − k0�

s,t
�̃m−s,n−t�z�Uy,st�z� + jkx,mSz,mn�z�,

�5b�

�
s,t

�̃m−s,n−t�z�Sz,s,t�z� =
− j

k0
�kx,mUy,mn�z� − ky,nUx,mn�z��,

�5c�

dUy,mn�z�

dz
= jky,nUz,mn�z� + k0�

s,t
�̃m−s,n−t�z�Sx,st�z�,

�5d�

dUx,mn�z�

dz
= − k0�

s,t
�m−s,n−t�z�Sy,s,t�z� + jkx,mUz,mn�z�,

�5e�

�
s,t

�̃m−s,n−t�z�Uz,mn�z� =
− j

k0
�kx,mSy,mn�z� − ky,nSx,mn�z��.

�5f�

he coefficients in Eqs. (5a)–(5f) are functions of the vari-
ble z. As mentioned previously, the staircase approxima-
ion of ��x ,y ,z� and ��x ,y ,z� along the z axis enables the
oupled equation system to be approximated to the equa-
ion system with constant coefficients in each staircase in-
erval. The S-matrix method is a recursive matrix algo-
ithm used to match the boundary conditions at all
oundaries generated by the staircase approximation.
In this paper, we propose an analysis method for solv-

ng Eqs. (5a)–(5f) without the staircase approximation. To
eveal the main concept of the proposed method, it is
nough to consider the cases of longitudinal one-
imensional structures. The permittivity and permeabil-
ty profiles of a longitudinal one-dimensional structure
re given by ��z� and ��z�, respectively. In this case the
oupled differential equation system of Eqs. (5a)–(5f) be-
omes simplified but the coefficients are z-dependent
unctions.
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. PSEUDO-FOURIER REPRESENTATION OF
IGENMODES AND EIGENVALUE
QUATION

n the case of a one-dimensional structure, the dielectric
tructure is a slab with longitudinal permittivity and per-
eability profiles as shown in Fig. 1. Figure 1 shows a di-

lectric slab of finite thickness d with arbitrary permittiv-
ty profile ��z� and permeability profile ��z� placed
etween region I and region II. In this paper, both the per-
ittivity ��z� and the permeability ��z� are assumed to

atisfy the following relations:
1. ��z��0 and ��z��0, which mean that the slab struc-

ure is made of dielectric material.
2. ��z� and ��z� are piecewise-continuous functions

ounded in the range of 0�z�d.
Let an incident wave Einc impinge from region I to the

ielectric slab. The incident wave is assumed to be a
lane wave with an incidence angle of �, an azimuthal
ngle of �, and a polarization angle of 	 with free-space
avelength 
. The incident wave is represented as

Einc = �Uxx + Uyy + Uzz�exp�j�kI,xx + kI,yy + kI,zz��,

�6a�

here Ux, Uy, and Uz are given by

�Ux,Uy,Uz� = �cos 	 cos � cos � − sin 	 sin �,

cos 	 cos � sin � + sin 	 cos �,− cos 	 sin ��,

�6b�

nd kI,x, kI,y, and kI,z are given by

�kI,x,kI,y,kI,z� = �k0nI sin � cos �,k0nI sin � sin �,k0nI cos ��,

�6c�

ith k0=2� /
 and nI is the refractive index of region I.
he reflected and transmitted waves in regions I and II
re represented, respectively, as

EI = Einc + �Rxx + Ryy + Rzz�exp�j�kI,xx + kI,yy − kI,zz��,

�7a�

ig. 1. Dielectric slab with arbitrary one-dimensional permit-
ivity and permeability profiles.
EII = �Txx + Tyy + Tzz�exp�j�kII,xx + kII,yy + kII,z�z − d���,

�7b�

here Rx, Ry, Rz are reflected wave components and Tx,
y, Tz are the transmitted wave components. To satisfy

he phase-matching conditions on the transverse plane
z=0 and z=d), the wave-vector components hold the fol-
owing relations:

kI,x = kII,x = k0nI sin � cos �, �8a�

kI,y = kII,y = k0nI sin � sin �, �8b�

kI,z = k0nI cos �, �8c�

kII,z = �k0
2nII

2 − k0
2nI

2 sin2 ��1/2, �8d�

here �kII,x ,kII,y ,kII,z� is the wave vector in region II, and
II is the refractive index of region II.
The internal electric and magnetic field distributions

nside the slab structure are given, from Eqs. (1a) and
1b), as

E�x,y,z� = �Sx�z�x + Sy�z�y + Sz�z�z�

� exp�j�kxx + kyy��, �9a�

H�x,y,z� = j��0/�0�Ux�z�x + Uy�z�y + Uz�z�z�

� exp�j�kxx + kyy��. �9b�

Then the pseudo-Fourier representation of eigenmodes
n a dielectric slab is described. At first, the periodic ex-
ensions of the permittivity profile ��z� and the permeabil-
ty profile ��z�, �̂�z� and �̂�z�, are defined, respectively, as

�̂�z� = ��z� � �
n=−�

+�


�z − nd�, �10a�

�̂�z� = ��z� � �
n=−�

+�


�z − nd�, �10b�

here � denotes convolution. Figure 2 shows the periodic
xtension �̂�z� of a permittivity profile ��z� with a funda-
ental period of d. In the periodic extension of the dielec-

ric slab with �̂�z� and �̂�z�, any existing internal electro-
agnetic field can be represented by a linear

uperposition of the pseudo-Fourier eigenmodes of the pe-
iodic extension from the Bloch theorem.12,13

From the Bloch theorem, the pseudo-Fourier eigen-
odes of the electric and magnetic fields inside the peri-

dic extension of the dielectric slab are given, respec-
ively, by

ig. 2. Periodic extension of a finite-sized dielectric slab with
ne-dimensional arbitrary permittivity profile.
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Ek�z� = exp�j�kxx + kyy + kzz��Êk�z�, �11a�

Hk�z� = exp�j�kxx + kyy + kzz��Ĥk�z�, �11b�

here k denotes the wave vector �kx ,ky ,kz�. Here kz is
onsidered as the eigenvalue of the pseudo-Fourier eigen-
ode �Ek�z� ,Hk�z��. Since both Êk�z� and Ĥk�z� are peri-

dic functions with a fundamental period d, they can be
pproximately expressed by truncated Fourier series.
We introduce the asymmetrically truncated Fourier

epresentations of Êk�z� and Ĥk�z�. The asymmetrically
runcated Fourier representations of Êk�z� and Ĥk�z� with
N+1 harmonic components, Êk

�N,m��z� and Ĥk
�N,m��z�, are

xpressed as

Êk
�N,m��z� = �

p=−N+m

N+m

�Ẽx,px + Ẽy,py + Ẽz,pz�exp�jpGzz�,

�12a�

Ĥk
�N,m��z� = j� �0

�0
�

p=−N+m

N+m

�H̃x,px + H̃y,py + H̃z,pz�exp�jpGzz�,

�12b�

here m is an integer in the range −N�m�N, the recip-
ocal vector Gz is given by 2� /d, and the number of the
symmetrically truncated Fourier representations of a
seudo-Fourier eigenmode is just 2N+1 (see Appendix A).
y substituting Eqs. (12a) and (12b) into Eqs. (11a) and

11b), the pseudo-Fourier eigenmode �Ek�z� ,Hk�z�� for a
ave vector k is expressed by 2N+1 asymmetrically trun-

ated pseudo-Fourier representations as follows:

Ek
�N,m��z� = exp�j�kxx + kyy�� �

p=−N+m

N+m

�Ẽx,px + Ẽy,py + Ẽz,pz�

� exp�j�pGz + kz
�N,m��z�, �13a�

Hk
�N,m��z� = exp�j�kxx + kyy��j� �0

�0
�

p=−N+m

N+m

�H̃x,px + H̃y,py

+ H̃z,pz�exp�j�pGz + kz
�N,m��z�, �13b�

here kz
�N,m� is an approximate value of kz in the asym-

etrically truncated pseudo-Fourier representation. Ac-
ording to the analysis on the uniform convergence of the
ourier representation established by Li,14 we can see
hat there exists a nonnegative integer pair �N* ,m*�N��
atisfying the inequalities, i.e., the convergence criteria;

�Ek�z� − Ek
�N,m��z�� � �E, �Hk�z� − Hk

�N,m��z�� � �H,

�kz − kz
�N,m�� � �k, �14�

here N�N* and �m � �m*�N��N is satisfied for small
ositive real numbers �E, �H, and �k, and kz is a true ei-
envalue of the true pseudo-Fourier eigenmode
Ek�z� ,Hk�z��. Additionally assuming that the envelop
rofile of the pseudo-Fourier mode �Ê �z� ,Ĥ �z�� is nearly
k k
and limited, we can confirm that there definitely exist fi-
ite positive integers N* and m*�N�.
According to the convergence criteria of inequalities

14), the asymmetrically truncated Fourier representa-
ions of a pseudo-Fourier eigenmode, Eqs. (13a) and (13b),
an be classified into three classes as indicated in Fig. 3.
igure 3 shows the discrete distribution of the Fourier co-
fficient Ẽx,p (or Ẽy,p) in the Fourier space. The first class
denoted by (i) in Fig. 3(a)] indicates that the total num-
er of used harmonics, 2N+1, is larger than the lower
ound 2N*+1, but the shift index m is outside the conver-
ence range �−m* ,m*�. The third class [denoted by (iii) in
ig. 3(b)] shows the deficiency of harmonic components
sed in the pseudo-Fourier representation. But the sec-
nd class [denoted by (ii) in Fig. 3(a)] satisfies the conver-
ence criterion of inequalities (14). It is expected that
ith enough harmonic components in the pseudo-Fourier

epresentation, a few in class (iii) having a large shift in-
ex m satisfying �m � �m* are considerably different from
he others included in class (ii). Also, it is expected that
he representations belonging to class (ii) would produce
n almost similar field profile and almost the same eigen-
alue kz

�N,m� according to the convergence criterion of in-
qualities (14). This point will be definitely manifested
hrough numerical simulations in Section 4.

Conclusively, we can see that classes (i) and (iii) cannot
orrectly represent the true pseudo-Fourier eigenmode
ecause of significant loss of nonzero high-frequency har-
onic components, while class (ii) correctly expresses the

rue pseudo-Fourier eigenmode. In addition, the total
umber of Fourier representations precisely describing
he true solution [that is, satisfying the convergence cri-
erion of inequalities (14) and belonging to class (ii)] is
m*�N�+1. The other 2�N−m*�N�� representations do not
atisfy the convergence criteria of inequalities (14).

ig. 3. Classification of 2N+1 pseudo-Fourier representations
f the pseudo-Fourier eigenmode according to the convergence
ondition.
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On the other hand, the pseudo-Fourier eigenmodes,
qs. (13a) and (13b), must satisfy the following Maxwell
quations:

� � E = j��0�̂�z��Hxx + Hyy + Hzz�, �15a�

� � H = − j��0�̂�z��Exx + Eyy + Ezz�, �15b�

here the periodic extensions of the permittivity and the
ermeability profiles �̂�z� and �̂�z� take the Fourier series
orm as

�̂�z� = �
g=−2N

2N

�̃g exp�jGzgz�, �16a�

�̂�z� = �
g=−2N

2N

�̃g exp�jGzgz�. �16b�

Let kz
�N,m�+pGz denoted by kz,p as kz,p=kz

�N,m�+pGz;
hen by substituting the pseudo-Fourier representations
f Eqs. (13a) and (13b) into Maxwell’s Eqs. (15a) and
15b), Maxwell’s equations are translated into the alge-
raic equation system of the Fourier coefficients of Eqs.
13a) and (13b) as

jkz,pẼy,p = k0 �
s=−N+m

N+m

�̃p−sH̃x,s + jkyẼz,p, �17a�

jkz,pẼx,p = − k0 �
N+m

�̃p−sH̃y,s + jkxẼz,p, �17b�

s=−N+m G=
�
s=−N+m

N+m

�̃p−sẼz,s = −
jkx

k0
H̃y,p +

jky

k0
H̃x,p, �17c�

jkz,p

k0
H̃y,p = �

s=−N+m

N+m

�̃p−sẼx,s +
jky

k0
H̃z,p, �17d�

jkz,p

k0
H̃x,p = − �

s=−N+m

N+m

�̃p−sẼy,s +
jkx

k0
H̃z,p, �17e�

�
s=−N+m

N+m

�̃p−sH̃z,s =
− jkx

k0
Ẽy,p +

jky

k0
Ẽx,p, �17f�

here the integer indices s and p are in the range of −N
m�s and p�N+m. The algebraic equation system of
qs. (17a)–(17f) can be manipulated as a matrix form. For

his, the following notations are adopted.
The Toeplitz matrices �= of �̃g and �

=
of �̃g are defined,

espectively, as

�= = �
�̃0 �̃−1 . . . �̃−2N

�̃1 �̃0 �̃−2N+1

	 	

�̃2N �̃2N−1 . . . �̃0


 , �18a�

�
=

= �
�̃0 �̃−1 . . . �̃−2N

�̃1 �̃0 �̃−2N+1

	 	

�̃2N �̃2N−1 . . . �̃0


 . �18b�

N+m N+m

z�−N+m, K=z�−N+m, K=y, and K=x are defined, respectively, as
G=z�−N+m
N+m = �

�− N + m�Gz

k0

0 . . . 0

0
�− N + m + 1�Gz

k0

0 0

	 	 � 0

0 0 . . .
�N + m�Gz

k0


 , �18c�
K=z�−N+m
N+m = �kz

�N,m�/k0�I= + G=z�−N+m
N+m , �18d�

K=y = �ky/k0�I= , �18e�

K=x = �kx/k0�I= , �18f�

here I= is the �2N+1�� �2N+1� identity matrix. The vec-
or notations Ẽx�−N+m

N+m , Ẽy�−N+m
N+m , H̃x�−N+m

N+m , and H̃y�−N+m
N+m are

efined, respectively, as
Ẽy�−N+m
N+m = �Ẽy,−N+m Ẽy,−N+m+1 . . . Ẽy,N+m�t,

�19a�

Ẽx�−N+m
N+m = �Ẽx,−N+m Ẽx,−N+m+1 . . . Ẽx,N+m�t,

�19b�
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H̃x�−N+m
N+m = �H̃x,−N+m H̃x,−N+m+1 . . . H̃x,N+m�t,

�19c�

H̃y�−N+m
N+m = �H̃y,−N+m H̃y,−N+m+1 . . . H̃y,N+m�t.

�19d�

hen, with use of the above notations, the algebraic equa-
ion system of Eqs. (17a)–(17f) is rewritten as

jK=z�−N+m
N+m Ẽy�−N+m

N+m = �
=

H̃x�−N+m
N+m + jK=yẼz�−N+m

N+m , �20a�

jK=z�N+m Ẽx�N+m = − �
=

H̃y�N+m + jK=xẼz�N+m , �20b�
−N+m −N+m −N+m −N+m

A
w
r
o
r

y −N+m x −N+m y −N+m x −N+m

p
c
k

i

�=Ẽz�−N+m
N+m = − jK=xH̃y�−N+m

N+m + jK=yH̃x�−N+m
N+m , �20c�

jK=z�−N+m
N+m H̃y�−N+m

N+m = jK=yH̃z�−N+m
N+m + �=Ẽx�−N+m

N+m , �20d�

jK=z�−N+m
N+m H̃x�−N+m

N+m = − �=Ẽy�−N+m
N+m + jK=xH̃z�−N+m

N+m , �20e�

�
=

H̃z�−N+m
N+m = − jK=xẼy�−N+m

N+m + jK=yẼx�−N+m
N+m . �20f�

he algebraic equation system of Eqs. (20a)–(20f) is con-
idered as the following matrix eigenvalue equation of
8N+4�� �8N+4� dimensions:
�
− jG=z�−N+m

N+m 0 K=y�=−1K=x �
=

− K=y�=−1K=y

0 − jG=z�−N+m
N+m − �

=
+ K=x�=−1K=x − K=x�=−1K=y

K=y�
=

−1K=x �= − K=y�
=

−1K=y − jG=z�−N+m
N+m 0

− �= + K=x�
=

−1K=x − K=x�
=

−1K=y 0 − jG=z�−N+m
N+m


�
Ẽy�−N+m

N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� = j
kz

�N,m�

k0 �
Ẽy�−N+m

N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� . �21�
he reciprocal permittivity profile �̂�z� and the reciprocal
ermeability �̂�z� are defined, respectively, as

�̂�z� =
1

�̂�z�
= �

g=−2N

2N

�̃g exp�jGzgx�, �22a�

�̂�z� =
1

�̂�z�
= �

g=−2N

2N

�̃g exp�jGzgx�. �22b�

hen their Toeplitz matrices �= and �
=

are taken, respec-
ively, as
�= = �
�̃0 �̃−1 ¯ �̃−2N

�̃1 �̃0 �̃−2N+1

	 	

�̃2N �̃2N−1 ¯ �̃0


 , �23a�

�
=

= �
�̃0 �̃−1 ¯ �̃−2N

�̃1 �̃0 �̃−2N+1

	 	

�̃2N �̃2N−1 ¯ �̃0


 . �23b�

ccording to Lalanne and Morris’s and Li’s previous
orks on the convergence of the Fourier

epresentation,3,14 �= is substituted into �=−1 in Eq. (21) to
btain the stable convergence of the pseudo-Fourier rep-
esentation. Thus, the main eigenvalue equation reads as
�
− jG=z�−N+m

N+m 0 K=y�=K=x �
=

− K=y�=K=y

0 − jG=z�−N+m
N+m − �

=
+ K=x�=K=x − K=x�=K=y

K=y�
=

K=x �= − K=y�
=

K=y − jG=z�−N+m
N+m 0

− �= + K=x�
=

K=x − K=x�
=

K=y 0 − jG=z�−N+m
N+m


�
Ẽy�−N+m

N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� = j
kz

�N,m�

k0 �
Ẽy�−N+m

N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� . �24�
ere, kz
�N,m� and �Ẽy�−N+m

N+m Ẽx�−N+m
N+m H̃y�−N+m

N+m H̃x�−N+m
N+m �t

re identified as an eigenvalue and an eigenvector,
espectively. Considering Eqs. (13a) and (13b), we
an see that the eigenvector
Ẽ �N+m Ẽ �N+m H̃ �N+m H̃ �N+m �t corresponds to a
seudo-Fourier eigenmode, �Ek
�N,m��z� ,Hk

�N,m��z��, which
an be distinguished by its own eigenvalue denoted by

z
�N,m�.
On the other hand, from Eq. (18c), the matrix Eq. (24)

s arranged as
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�
− jG=z�−N

N 0 K=y�=K=x �
=

− K=y�=K=y

0 − jG=z�−N
N − �

=
+ K=x�=K=x − K=x�=K=y

K=y�
=

K=x �= − K=y�
=

K=y − jG=z�−N
N 0

− �= + K=x�
=

K=x − K=x�
=

K=y 0 − jG=z�−N
N



��

Ẽy�−N+m
N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� = j
kz
�N,m� + mGz

k0
��

Ẽy�−N+m
N+m

Ẽx�−N+m
N+m

H̃y�−N+m
N+m

H̃x�−N+m
N+m

� . �25�

As proven in Appendix A, the number of nontrivial
seudo-Fourier representations of a pseudo-Fourier
igenmode is 2N+1. We can consider the corresponding
N+1 nontrivial vectors �Ẽy�0

2N Ẽx�0
2N H̃y�0

2N H̃x�0
2N�t,

. ., �Ẽy�−2N
0 Ẽx�−2N

0 H̃y�−2N
0 H̃x�−2N

0 �t as the eigenvectors
f the following eigenvalue equation:

�
− jG=z�−N

N 0 K=y�=K=x �
=

− K=y�=K=y

0 − jG=z�−N
N − �

=
+ K=x�=K=x − K=x�=K=y

K=y�
=

K=x �= − K=y�
=

K=y − jG=z�−N
N 0

− �= + K=x�
=

K=x − K=x�
=

K=y 0 − jG=z�−N
N



��

Ey

Ex

Hy

Hx

� = ��
Ey

Ex

Hy

Hx

� . �26�

heir own � eigenvalues are identified, respectively, as

− jk0� = kz
�N,N� + NGz, . . . ,kz

�N,−N� − NGz. �27�

hese 2N+1 nontrivial eigenvector–eigenvalue pairs are
pproximate pseudo-Fourier representations of a true
seudo-Fourier eigenmode with eigenvalue kz.
On the other hand, the dimension of the matrix in Eq.

26) is �8N+4�� �8N+4�. The number of nontrivial
igenvector–eigenvalue pairs of Eq. (26) is 8N+4. There-
ore just four different pseudo-Fourier eigenmodes can be
dentified in the scheme of Eq. (26) because 8N+4 eigen-
airs are classified into each homogeneous group com-
osed of 2N+1 eigenpairs. Physically, this means that
nly four pseudo-Fourier eigenmodes exist in the periodic
xtensions of dielectric slabs with �̂�z� and �̂�z�.

To correctly distinguish the four pseudo-Fourier eigen-
odes among 8N+4 eigenvector–eigenvalue pairs of Eq.

26), the wavenumbers in the first Brillouin zone must be
xtracted from each obtained eigenvalue. Explicitly the
avenumber in the first Brillouin zone, �̃1st Brill, can be

xtracted by the following formula:

�̃1st Brill = � − Gz��Im��� + 0.5Gz�mod�Gz��, �28�

here Im��� indicates the imaginary part of a complex
umber �. If m= �Im���+0.5Gz�mod�Gz� is satisfied, the
rst Brillouin zone wavenumber �̃1st Brill and its corre-
ponding eigenvector �Ey Ex Hy Hx�t are identified,
espectively, as �Ẽ �N+m Ẽ �N+m H̃ �N+m H̃ �N+m �t
y −N+m x −N+m y −N+m x −N+m
nd kz
�N,m�. It is reasonable to select the symmetric repre-

entation �Eg
�N,0��z� ,Hg

�N,0��z�� among 2m*�N�+1 pseudo-
ourier representations of a pseudo-Fourier eigenmode in
lass (ii) to construct the pseudo-Fourier eigenmode
Eg�z� ,Hg�z��. Here, for the convenience, the mode index
s denoted by g instead of k. Then the mode selection rule
s simplified. We just select the individuals satisfying the
ollowing relation among the obtained 8N+4 eigenvalues
see Eq. (28)]:

�Im��� + 0.5Gz�mod�Gz� = 0. �29�

It is confirmed that the number of individuals satisfy-
ng that condition is exactly four. Conclusively we can eas-
ly identify four pseudo-Fourier eigenmodes with the

ethod described above.

. PSEUDO-FOURIER EIGENMODE
XTRACTION
o validate the theory described in Section 2, we present
wo illustrative examples. Figures 4(a) and 4(b) show a 4

hickness dielectric slab with longitudinal continuous per-
ittivity and permeability profiles, and a 4
 thickness di-

lectric slab with longitudinal discrete permittivity and

ig. 4. Dielectric structure with thickness of 4
 and (a) longitu-
inal continuous permittivity and permeability profiles and (b)
ongitudinal discrete permittivity and permeability profiles.
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ermeability profiles, respectively. In this section, the
seudo-Fourier eigenmodes and eigenvalues of two com-
arative structures are extracted with the PFMA.
In the analysis, the plane wave, with incidence angle of

/4, azimuthal angle of � /3, polarization angle of � /4,
nd unit intensity, is taken as the external incident
ource. At first, the dielectric slab with continuous
ermittivity and permeability profiles shown in Fig. 4(a)
s analyzed. Figure 5 shows the eigenvalue distributions
hat are obtained by solving the main eigenvalue Eq. (26)
nd folding the eigenvalues to the first Brillouin zone
ith use of Eqs. (27) and (28). In Fig. 5, the imaginary
art of jkz

�N,m� scaled by k0 is plotted. If kz
�N,m� is a

ure real number, the corresponding eigenmode
Ek

�N,m��z� ,Hk
�N,m��z�� is referred to as a nonevanescent

ode, while if the imaginary part of kz
�N,m� is nonzero, the

orresponding eigenmode �Ek
�N,m��z� ,Hk

�N,m��z�� is referred
o as an evanescent mode. Figure 5(a) shows the eigen-
alue distribution when the number of harmonic compo-
ents used in the pseudo-Fourier representation, 2N+1,

s 21. As indicated in Fig. 5(a), the convergence of the ei-
envalue is not perceived due to the insufficient number
f Fourier harmonic components. According to the classi-
cation rule of the pseudo-Fourier representations, all
epresentations used in this case are included in class
iii). On the other hand, Fig. 5(b) illustrates the case in
hich a sufficient number of harmonic components �2N
1=129� are used in the field representation. As seen in

ig. 5. Analyzed eigenvalue distributions in the first Brillouin
one of the dielectric slab with continuous permittivity and per-
eability profiles when (a) N=10 and (b) N=64.
ig. 5(b), four flat portions appear in the eigenvalue dis-
ribution plot. It is noted that there exist unflat transition
egions between adjacent flat intervals, i.e., nonconver-
ent eigenvalues. The Fourier representations corre-
ponding to the flat portions belong to class (ii), but those
orresponding to the nonconvergent eigenvalues are clas-
ified into class (i).

Among the convergent pseudo-Fourier representations,
our symmetric representations, �Eg

�N,0��z� ,Hg
�N,0��z��, are

elected for building the gth pseudo-Fourier eigenmode
Eg�z� ,Hg�z�� that can be extracted with the use of Eq.
29).

Considering the eigenvalue distribution in Fig. 5(b), we
an understand that two pseudo-Fourier eigenmodes,
E1�z� ,H1�z�� and �E2�z� ,H2�z��, propagate backward
long the z direction and are orthogonally polarized to
ach other. The other pseudo-Fourier eigenmodes,
E3�z� ,H3�z�� and �E4�z� ,H4�z��, are also orthogonally po-
arized to each other and propagate forward along the z
irection. From the symmetry of the eigenvalue distribu-
ion, we can see that �E1�z� ,H1�z�� is the conjugate mode
f �E4�z� ,H4�z��, and �E2�z� ,H2�z�� is the conjugate mode
f �E3�z� ,H3�z��. Figure 6 illustrates the field distribu-
ions of the four extracted pseudo-Fourier eigenmodes in-
ide the dielectric slab, �E1�z� ,H1�z��, . . ., �E4�z� ,H4�z��. In
he case of the continuous structure, four scaled eigenval-
es (scaled by −jk0 for convenience) are obtained, respec-
ively, as jkz

�1� /k0=−0.0767j, jkz
�2� /k0=−0.0483j, jkz

�3� /k0

+0.0483j, and jkz
�4� /k0= +0.0767j. Thus all extracted

seudo-Fourier eigenmodes are nonevanescent modes.
However, in the second example of the dielectric slab

ith discrete permittivity and permeability profiles
hown in Fig. 4(b), all four extracted pseudo-Fourier
igenmodes are evanescent modes. Especially it is noted
hat the analytic Fourier representations of the discrete
ermittivity and permeability profiles provided in Appen-
ix B should be used in the calculation to achieve high ac-
uracy.

Figure 7(a) shows the eigenvalue distribution for the
iscrete case when the number of harmonic components
sed in the pseudo-Fourier representation is insufficient
2N+1=21�, while Fig. 7(b) shows the convergent eigen-
alue distribution with use of sufficient harmonic compo-
ents �2N+1=129�. Figure 8 illustrates the field distribu-
ions of the four extracted pseudo-Fourier eigenmodes
nside the dielectric slab, �E1�z� ,H1�z��, . . ., �E4�z� ,H4�z��.
n this case, the extracted eigenvalues are obtained, re-
pectively, as jkz

�1� /k0=−0.0205, jkz
�2� /k0=−0.0163, jkz

�3� /k0

+0.0163, and jkz
�4� /k0= +0.0205. Thus all extracted

seudo-Fourier eigenmodes are evanescent modes. This
oint is definitely indicated in the eigenvalue distribution
llustrated in Fig. 7(b). When a sufficient number of har-

onic components �2N+1=121� are used in the field rep-
esentation, as seen in Fig. 7(b), a wide flat portion ap-
ears near the center axis since all eigenvalues are pure
maginary numbers. Inspecting the distribution of
e�jkz

�N,m�� /k0, we can see that the eigenvalues in the cen-
er flat portion are pure real numbers. That means that
he flat portion includes four independent evanescent
igenmodes. It is noted that the evanescent modes
E �z� ,H �z�� and �E �z� ,H �z�� are exponentially decreas-
1 1 2 2
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ng along the z direction, but the evanescent modes
E3�z� ,H3�z�� and �E4�z� ,H4�z�� seem to be exponentially
ncreasing along the z direction. The exponentially in-
reasing evanescent mode may be somewhat unphysical,
ut these increasing evanescent modes play a role in rep-
esenting the real evanescent field near the backside
oundary �z=d� of the finite structure.

. BOUNDARY CONDITION AND TOTAL
IELD DISTRIBUTION

n Sections 3 and 4, the four pseudo-Fourier eigenmodes
re identified for the periodic extension of a unit slab
tructure with finite thickness and longitudinal arbitrary
ermittivity and permeability profiles. In this section, on
he basis of the theoretical analysis on the pseudo-Fourier
igenmodes, the calculation of the total electromagnetic

ig. 6. Extracted pseudo-Fourier eigenmodes of the dielect
E1�z� ,H1�z�� with jkz

�1� /k0=−0.0767j, (b) �E2�z� ,H2�z�� with jkz
�2� /k

ith jkz
�4� /k0= +0.0767j.
eld distribution inside finite dielectric slabs is ad-
ressed. For the validity of the proposed PFMA method,
he numerical results of the PFMA are compared with
hose of the conventional RCWA and S-matrix method.

The main principle is that the total electromagnetic
eld distribution inside a dielectric slab can be repre-
ented by a linear superposition of extracted pseudo-
ourier eigenmodes with appropriate coupling constants

o satisfy given boundary conditions. Thus the total elec-
ric field distribution E and magnetic field distribution H
re expressed, respectively, as

E = �
g=1

4

CgEg�z� = exp�j�kxx + kyy���
g=1

4

Cg� �
p=−N

N

�Ẽx,p
�g�x + Ẽy,p

�g�y

+ Ẽz,p
�g�z�exp�jpGzz��exp�jkz,gz�, �30a�

b with continuous permittivity and permittivity profiles: (a)
0483j, (c) �E3�z� ,H3�z�� with jkz

�3� /k0= +0.0483j, (d) �E4�z� ,H4�z��

ric sla

0=−0.
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H = �
g=1

4

CgHg�z� = exp�j�kxx + kyy��j� �0

�0
�
g=1

4

Cg� �
p=−N

N

�H̃x,p
�g�x

+ H̃y,p
�g�y + H̃z,p

�g�z�exp�jpGzz��exp�jkz,gz�,

�30b�

here Cg is the coupling coefficient. The four coupling co-
fficients C1, C2, C3, and C4 must be determined to satisfy
he boundary conditions specified at z=z− and z=z+ �z−
z+�. In fact, the field expressions of Eqs. (30a) and (30b)

mply a general solution of the Maxwell Eqs. (30a) and
30b) inside a periodic extension of a unit permittivity
rofile. This means that two boundaries, z=z− and z=z+,
f the finite dielectric structure can be placed at any two
ositions inside the periodic extension shown in Fig. 2.
he field expressions of Eqs. (30a) and (30b) can be exact
otal field distributions in the dielectric slab confined by
he two boundaries z=z− and z=z+. The proper determi-
ation of the four coupling coefficients is only required to
atisfy the boundary conditions at the two boundaries. In
he cases of the finite dielectric slab shown in Fig. 1, the
rst and the second boundaries are selected as z−=0 and
+=d, respectively,

The boundary conditions are described as follows. At z
0, the transverse electric and magnetic fields must be
ontinuous. These conditions read as

ig. 7. Analyzed eigenvalue distributions in the first Brillouin
one of the dielectric slab with discrete permittivity and perme-
bility profiles when (a) N=10 and (b) N=64.
uy + Ry = �
g=1

4

Cg
 �
p=−N

N

Ẽy,p
�g�� , �31a�

ux + Rx = �
g=1

4

Cg
 �
p=−N

N

Ẽx,p
�g�� , �31b�

�kI,zux − kxuz�/k0 + �− kI,zRx − kxRz�/k0 = j�
g=1

4

Cg
 �
p=−N

N

H̃y,p
�g�� ,

�31c�

�kyuz − kI,zuy�/k0 + �kyRz + kI,zRy�/k0 = j�
g=1

4

Cg
 �
p=−N

N

H̃x,p
�g�� .

�31d�

sing the aid of the transverse condition of the plane
ave

kxRx + kyRy − kI,zRz = 0, �31e�

qs. (31a)–(31d) are arranged in the following matrix
orm:

�
uy

ux

�kI,zux − kxuz�/k0

�kyuz − kI,zuy�/k0

� + �
1 0

0 1

−
kxky

k0kI,z
−

�kI,z
2 + kx

2�

k0kI,z

�ky
2 + kI,z

2 �

k0kI,z

kykx

k0kI,z



Ry

Rx
�

= �
�

p=−N

N

Ẽy,p
�1� �

p=−N

N

Ẽy,p
�2� �

p=−N

N

Ẽy,p
�3� �

p=−N

N

Ẽy,p
�4�

�
p=−N

N

Ẽx,p
�1� �

p=−N

N

Ẽx,p
�2� �

p=−N

N

Ẽx,p
�3� �

p=−N

N

Ẽx,p
�4�

j �
p=−N

N

H̃y,p
�1� j �

p=−N

N

H̃y,p
�2� j �

p=−N

N

H̃y,p
�3� j �

p=−N

N

H̃y,p
�4�

j �
p=−N

N

H̃x,p
�1� j �

p=−N

N

H̃x,p
�2� j �

p=−N

N

H̃x,p
�3� j �

p=−N

N

H̃x,p
�4�



��

C1

C2

C3

C4

� . �32�
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ext, at z=d, the continuation conditions of the trans-
erse electric and magnetic fields read as

Ty = �
g=1

4

Cg
 �
p=−N

N

Ẽy,p
�g� exp�j�kz,g + pGz�d�� , �33a�

Tx = �
g=1

4

Cg
 �
p=−N

N

Ẽx,p
�g� exp�j�kz,g + pGz�d�� , �33b�

�kII,zTx − kxTz�/k0 = j�
g=1

4

Cg
 �
p=−N

N

H̃y,p
�g� exp�j�kz,g + pGz�d�� ,

ig. 8. Extracted pseudo-Fourier eigenmodes of the dielectric sla
ith jkz

�1� /k0=−0.0205, (b) �E2�z� ,H2�z�� with jkz
�2� /k0=−0.0163,

+0.0205.
�33c� f
�kyTz − kII,zTy�/k0 = j�
g=1

4

Cg
 �
p=−N

N

H̃x,p
�g� exp�j�kz,g + pGz�d�� .

�33d�

sing the transverse condition of the plane wave

kxTx + kyTy + kII,zTz = 0, �33e�

qs. (33a)–(33d) are arranged in the following matrix

discrete permittivity and permeability profiles: (a) �E1�z� ,H1�z��
3�z� ,H3�z�� with jkz

�3� /k0=0.0163, (d) �E4�z� ,H4�z�� with jkz
�4� /k0
b with
(c) �E
orm:



T
r
c
t
F
w

w
c
y
x
i
S
i
c
fi
S
t
r
e
w

w
l
y
x
i
fi
S
p
s
a
S

6
I
d
a
m
F

2188 J. Opt. Soc. Am. A/Vol. 23, No. 9 /September 2006 Kim et al.
�
I 0

0 I

kykx

k0kII,z

�kII,z
2 + kx

2�

k0kII,z
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he four coupling coefficients C1, C2, C3, and C4 and the
eflection and transmission coefficients Rx, Ry, Tx, and Ty
an be obtained from Eqs. (32) and (34). By this manner,
he total field distributions inside the dielectric slabs in
igs. 4(a) and 4(b) are calculated. These are compared
ith those of the RCWA with the S-matrix.
Total electric field distributions in the dielectric slab

ith continuous permittivity and permeability profiles
alculated by the PFMA are illustrated in Fig. 9. The
-directional electric field component Ey�z� and the
-directional electric field component Ex�z� are presented
n Figs. 9(a) and 9(b), respectively. For the RCWA with the
-matrix method, the continuous profiles of the permittiv-

ty and permeability are quantized to the multilevel stair-
ase structure as shown in Fig. 10. In Fig. 11, the total
eld distributions obtained by the RCWA with the
-matrix method are presented. Comparing the field dis-

ributions in Figs. 9 and 11, we can see that the numerical
esults obtained by the proposed PFMA method show an
xcellent agreement with those of the conventional RCWA
ith the S-matrix method.
Total electric field distributions in the dielectric slab

ith discrete permittivity and permeability profiles calcu-
ated by the PFMA are illustrated in Fig. 12. The
-directional electric field component Ey�z� and the
-directional electric field component Ex�z� are presented
n Figs. 12(a) and 12(b), respectively. In Fig. 13, the total
eld distributions obtained by the RCWA with the
-matrix method are presented for a comparison. Com-
aring the field distributions in Figs. 12 and 13, we can
ee that the proposed PFMA method shows an excellent
greement with the conventional RCWA with the
-matrix method in the case of discrete profiles.

. CONCLUSION
n this paper, a PFMA method for analyzing finite-sized
ielectric slabs with arbitrary longitudinal permittivity
nd permeability profiles without the staircase approxi-
ation was proposed. In the PFMA, the internal pseudo-
ourier eigenmodes are extracted with specific eigenval-
es. The eigenvalues can be obtained by the eigenvalue
istribution analysis using the asymmetrically truncated
ourier field representation. It was shown that the total
eld distribution inside the finite-sized dielectric slab ex-
ited by an external plane wave can be precisely calcu-
ated by the linear superposition of four pseudo-Fourier

ig. 9. Total electric field distributions in the dielectric slab
ith continuous permittivity and permeability profiles (a) Ey (z)
nd (b) E (z) obtained by the PFMA.
x
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igenmodes with appropriate coupling coefficients satisfy-
ng the boundary conditions. The validity of the PFMA is
roved by the excellent agreement of the PFMA with the
onventional RCWA with the S-matrix method. The
athematical techniques of dealing with longitudinal

ermittivity and permeability profiles and extracting
seudo-Fourier eigenmodes in the PFMA are general, so
hey can be directly extended to analyze three-
imensional structures. The pseudo-Fourier mode-based
epresentation of the internal electromagnetic field is
ore precise and better in convergence than the simple
ourier representation.11,12 The PFMA method is a com-

ig. 10. Staircase approximation of the continuous permittivity
nd permeability profiles in the dielectric slab obtained by the
CWA with the S-matrix method.

ig. 11. Total electric field distributions in the dielectric slab
ith continuous permittivity and permeability profiles (a) Ey�z�
nd (b) Ex�z� obtained by the S-matrix method and the (one-
imensional version) RCWA.
lete modal analysis method for finite-sized dielectric
labs with arbitrary three-dimensional permittivity and
ermeability profiles.

PPENDIX A
ere it is proved that the number of the nontrivial
seudo-Fourier representations of a pseudo-Fourier
igenmode is 2N+1. For simplicity, only the permittivity
odulation is taken into account. A pseudo-Fourier mode

f the periodic series of the dielectric slab is substituted
nto Maxwell’s equations as

� � �exp�j�k · r��E� = j��0�exp�j�k · r��H�, �A1�

� � �exp�j�k · r��H� = − j��0��z��exp�j�k · r��E�. �A2�

et the dc terms of the permittivity profile, the electric
igenmode, and the magnetic eigenmode be defined as fol-
ows:

�̃0 =�
0

d

��z�dz, �A3�

ig. 12. Total electric field distributions in the dielectric slab
ith discrete permittivity and permeability profiles (a) Ey�z� and

b) E �z� obtained by the PFMA.
x
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Ẽ0 =�
0

d

E�z�dz, �A4�

H̃0 =�
0

d

H�z�dz. �A5�

ext, using Eqs. (A3)–(A5), let the following manipula-
ion of the Maxwell Eqs. (A1) and (A2) be performed:

� � �exp�j�k · r���E − Ẽ0 + Ẽ0��

= j��0�exp�j�k · r���H − H̃0 + H̃0��, �A6�

� � �exp�j�k · r���H − H̃0 + H̃0��

= − j��0���z� − �̃0 + �̃0��exp�j�k · r���E − Ẽ0 + Ẽ0��.

�A7�

fter further manipulation, we get

ig. 13. Total electric field distributions in the dielectric slab
ith discrete permittivity and permeability profiles (a) Ey�z� and

b) Ex�z� obtained by the S-matrix method and the (one-
imensional version) RCWA.
� � �exp�j�k · r���E − Ẽ0�� + � � �exp�j�k · r��Ẽ0�

= j��0�exp�j�k · r���H − H̃0�� + j��0�exp�j�k · r��H̃0�,

�A8�

� � �exp�j�k · r���H − H̃0�� + � � �exp�j�k · r��H̃0�

= − j��0�̃0�exp�j�k · r���E − Ẽ0�� − j��0�̃0�exp�j�k · r��E�

− j��0���z� − �̃0��exp�j�k · r��E�. �A9�

e can separate Eqs. (A8) and (A9) into two parts as fol-
ows:

�i� � � �exp�j�k · r��Ẽ0� = j��0�exp�j�k · r��H̃0�,

�A10�

� � �exp�j�k · r��H̃0� = − j��0�̃0�exp�j�k · r��E�,

�A11�

�ii� � � �exp�j�k · r���E − Ẽ0��

= j��0�exp�j�k · r���H − H̃0��, �A12�

� � �exp�j�k · r���H − H̃0�� = − j��0�̃0�exp�j�k · r���E − Ẽ0��

− j��0���z� − �̃0��exp�j�k · r��E�.

�A13�

art (i) must have a nontrivial solution. That means that
he representation of the electromagnetic field inside the
lab must include a dc spectrum that is not zero. Thus,
he total number of Fourier representations of the true
igenmode is 2N+1 when the number of plane-wave com-
onents is 2N+1. Therefore, approximate representations
or exp�j�k ·r��=exp�j�kx,0x+ky,0y+kz,0z�� read as follows:

E�N��z� = �
p=0

2N

�Ẽx,px + Ẽy,py + Ẽz,pz�exp�jpGzz�,

kz = kz,0 + �k�N�, �A14�

E�N−1��z� = �
p=−1

2N−1

�Ẽx,px + Ẽy,py + Ẽz,pz�exp�jpGzz�,

kz = kz,0 + �k�N−1�, �A15�

. .

E−�N−1��z� = �
p=−�2N−1�

1

�Ẽx,px + Ẽy,py + Ẽz,pz�exp�jpGzz�,

kz = kz,0 + �k−�N−1�, �A16�

E−N�z� = �
p=−2N

0

�Ẽx,px + Ẽy,py + Ẽz,pz�exp�jpGzz�,

k = k + �k−N. �A17�
z z,0
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PPENDIX B
he Fourier coefficients of a discrete permittivity (perme-
bility) profile can be analytically obtained as follows. The
iscrete permittivity profile with L homogeneous layers is
escribed in Fig. 14. In each section, the thickness and
he permittivity value in the pth section are denoted by dp
nd ��p�, respectively. The boundaries between the adja-
ent pth layer and the �p+1�th layer are indicated by lp
nd lp+1 as shown in Fig. 14. Then it is easily proven that
he periodic extension �̃�z� of the permittivity profile ��z�
s represented by the Fourier expansion

�̃�z� = �
k=−2N

k=2N

�̃k exp
j
2�k

d
z� , �B1�

here the Fourier coefficient �̃k is given by

�̃k = �
p=1

L �̃pdp

d
sinc
dpk

d �exp
− j
�k

d
�lp−1 + lp�� . �B2�

Contact information for B. Lee, the corresponding au-
hor, is as follows: e-mail, byoungho@snu.ac.kr; phone, 82-

ig. 14. Discrete permittivity profile with L homogeneous
ayers.
-880-7245; fax, 82-2-873-9953.
EFERENCES
1. D. F. Felbacq and F. Zolla, “Scattering theory of photonic

crystals,” in Introduction to Complex Mediums for Optics
and Electromagnetics, Vol. PM123 of the SPIE Press
Monographs, W. S. Weiglhofer and A. Lakhtakia, eds.
(SPIE Press, 2003).

2. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave
analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71,
811–818 (1981).

3. P. Lalanne and G. M. Morris, “Highly improved
convergence of the coupled-wave method for TM
polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

4. P. Lalanne, “Improved formulation of the coupled-wave
method for two-dimensional gratings,” J. Opt. Soc. Am. A
14, 1592–1598 (1997).

5. L. Li, “Fourier modal method for crossed anisotropic
gratings with arbitrary permittivity and permeability
tensors,” J. Opt. A, Pure Appl. Opt. 5, 345–355 (2003).

6. L. Li, “Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings,” J.
Opt. Soc. Am. A 13, 1024–1035 (1996).

7. M. Neviere and E. Popov, Light Propagation in Periodic
Media: Differential Theory and Design (Marcel Dekker,
2002).

8. Y. Jeong and B. Lee, “Nonlinear property analysis of long-
period fiber gratings using discretized coupled-mode
theory,” IEEE J. Quantum Electron. 35, 1284–1292 (1999).

9. E. Popov, M. Neviere, B. Gralak, and G. Tayeb, “Staircase
approximation validity for arbitrary-shaped gratings,” J.
Opt. Soc. Am. A 19, 33–42 (2002).

0. E. Popov and M. Neviére, “Differential theory for
diffraction gratings: a new formulation for TM polarization
with rapid convergence,” Opt. Lett. 25, 598–600 (2000).

1. K. Sakoda, “Optical transmittance of a two-dimensional
triangular photonic lattice,” Phys. Rev. B 51, 4672–4675
(1995).

2. K. Sakoda, Optical Properties of Photonic Crystals
(Springer, 2001).

3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystal: Molding the Flow of Light (Princeton U. Press,
1995).

4. L. Li, “Use of Fourier series in the analysis of
discontinuous periodic structures,” J. Opt. Soc. Am. A 13,

1870–1876 (1996).


