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Diffractive Optic Synthesis and Analysis of Light Fields and Recent Applications
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The synthesis and analysis of light fields having specific properties are the main issues in diffractive optics. Light field
synthesis technology with diffractive optical elements can provide actual solutions for various applications that require
extraordinary optical functions. Also, the rigorous analysis of a light field is an essential element for the design and application
of micro- or nanoscale diffractive optical elements. In this paper we review the theoretical aspects of the diffractive optic
synthesis and analysis of light fields, and present some recent applications of diffractive optical elements for information,
nano-, and biotechnologies. [DOI: 10.1143/JJAP.45.6555]
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1. Introduction

It is interesting to note that although Rayleigh pointed out
the theoretical possibility of a surface relief structure of
diffractive optical elements (DOEs), he commented that ‘‘It
is not likely that such a result will ever be fully attained in
practice’’ due to the requirement of subwavelength height
accuracy.1,2) At present, we can implement surface relief
diffractive optical devices by means of modern technologies
such as lithography or diamond turning. We now are also
equipped with holography technologies to make holographic
optical elements (HOEs) as well. Another important tech-
nology is the development of dynamic modulators such as
liquid crystal devices or micro-electro-mechanical systems
that enable dynamic diffractive optical devices.

Diffractive optics has been greatly advanced particularly
during the last two decades with the rapid progress of
fabrication and computer technologies.3–6) Light field syn-
thesis techniques with DOEs provide actual solutions for
various applications that require extraordinary optical
functions such as laser beam shaping, display, optical
interconnection and switching, manipulating nanoparticles,
and bio-sensors.

It can be said that the primary function of DOEs is the
synthesis of any desired light field distribution in a specified
space domain. The specified space domain can be a two-
dimensional (2D) flat surface, a 2D curved surface or a
three-dimensional (3D) volume. In most cases, the goal of
designing a DOE is to form the required optical intensity
distributions on a 2D surface3–18) or in a 3D volume.19–26)

The synthesis of light fields that satisfy the required
properties in a 2D space domain is now well understood.3–18)

During recent years, the 2D domain problem was general-
ized to the 3D domain problem and the feasibility of 3D field
synthesis was demonstrated. The 3D field synthesis problem
requires some advanced understanding and generalization of
constraints and limitations related to the properties of 3D
fields.20,22)

Diffractive optic field analysis is also an important area of
research, particularly because of the recent interest in micro-
or nanoscale diffractive structures such as subwavelength
DOEs, surface plasmon devices, and photonic crystals. Of
course, the primary purpose of using those effects or devices
is also to synthesize any desired light field. However, the

design of these devices requires very different approaches
and we must have good tools for analyzing diffractive optics
in these cases.

In this paper, we discuss the light field synthesis problem
using DOE, particularly with respect to its theoretical
aspects. The synthesis problems can be classified by the
dimensionality, 2D or 3D, and each problem can also be
subdivided according to specifications and optimization
techniques. The 2D/3D synthesis problems and optimization
techniques can be described with a unified formalism. The
diffractive field analyses for subwavelength DOEs and
surface plasmon resonance are also briefly explained. We
discuss some recent applications of DOEs to information,
nano-, and biotechnologies.

The diffractive optic synthesis and analysis of light is
an important field of research and has been intensively
researched. Hence, it is not possible to review all relevant
sub-topics in these areas in this limited-length paper. The
purpose of this review paper is not to review diffractive
optics completely but to provide an overview on some
current interests in these fields.

This paper is organized as follows. In §2, as a prerequisite
to the main contents, the methods of representing light fields
are reviewed and the light field propagation through a
general DOE optical system is explained with these
representations. In §3, a mathematical modeling of the light
field synthesis problem is accounted for. The light field
synthesis problems and the strategies for solving them are
presented. In §4, diffractive optic analysis methods of light
fields are discussed. In §5, some applications of DOEs are
presented and finally, concluding remarks follow in §6.

2. Light Field Propagation through General DOE
Optical System

From diffraction theory, it is well understood that the
whole spatial field distribution in the free space can be
governed by the surface boundary condition.27,28) Thus, the
basic strategy for synthesizing a light field in the output
domain is to find an appropriate surface field distribution on
the specified input plane (DOE domain) and manipulate the
obtained surface boundary condition using a light field
modulator, as shown in Fig. 1. The surface boundary
condition can be realized with light field modulators such
as surface relief DOEs, HOEs, computer-generated holog-
raphy (CGH) films or dynamic DOEs adopting phase-type
spatial light modulators (SLMs). In this paper, we focus on�Corresponding author. E-mail address: byoungho@snu.ac.kr
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DOEs. In most cases, phase-only devices that modulate only
the phase profiles of the incident optical wave (while
maintaining the pregiven amplitude profile) are attractive
due to their high transmission efficiency and/or simple
fabrication. Although absorption-type DOEs also exist, we
only focus on the design of phase-only elements in this
paper. Another issue of much study is the effect of low
coherent light in DOEs.29,30) However, this issue will not be
considered in this paper. Hence, we assume coherent light in
our discussion on diffractive optic synthesis.

In the paraxial approximation regime, all wavefront
modulators such as lenses and DOEs are modeled by the
thin element approximation (TEA). The light modulated by
a TEA device is also a paraxial light field. Although the
more refined transmittance model of DOE and the non-
paraxial regime vectorial field phenomena are not included
in this limited-length paper, there are many publications on
those topics.31–37) The paraxial light field in free space can be
described with various representation schemes. The most
popular schemes are the Fourier representation (angular
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Fig. 1. (a) 2D domain intensity distribution synthesis

problem, (b) 3D domain intensity distribution syn-

thesis problem, (c) 3D image synthesis problem.
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spectrum representation) and the Hermite-Gaussain-mode
representation. Nowadays, fractional Fourier transform38) is
being looked upon as a powerful analysis tool for the
paraxial field, but in this paper, we do not deal with the
fractional Fourier transform. In this section, we review the
Fourier and Hermite-Gaussian representations of paraxial
light fields and present the field propagation through a
general optical system with a DOE using the Fourier
representation and the Hermite-Gaussian representation.

2.1 Field representation
The paraxial Fresnel diffraction integral is obtained from

the first kind Rayleigh–Sommerfeld diffraction integral with
the paraxial approximation (the Fresnel approximation).
This is introduced in many text books (see, for example,
refs. 27 and 28). The Fresnel diffraction integral can also be
directly derived from the Fourier representation (angular
spectrum representation). The Fourier representation of the
diffraction field Fðx; y; zÞ is given by

Fðx; y; zÞ ¼
ZZ1
�1

Að�; �Þ exp j2� �xþ �yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=�Þ2 � �2 � �2

q
z

� �� �
d� d�; ð1Þ

where Að�; �Þ denotes the angular spectrum of the light field on the DOE plane (see Fig. 1), � ¼ kx=2�, � ¼ ky=2� (k is the
wave vector), and � is the wavelength of light. In the paraxial regime, the light field is then obtained as

Fðx; y; zÞ ¼ exp½ j2�z=��
ZZ1
�1

Að�; �Þ exp½ j2�ð�xþ �yÞ� exp½���zð�2 þ �2Þ� d� d�: ð2Þ

The Fourier coefficient Að�; �Þ is represented by the field Fðx; y; 0Þ at the input plane (z ¼ 0) as

Að�; �Þ ¼
ZZ1
�1

Fðx0; y0; 0Þ exp½�j2�ð�x0 þ �y0Þ� dx0 dy0 ð3Þ

By substituting eq. (3) into eq. (2), the diffraction field Fðx; y; zÞ reads as

Fðx; y; zÞ

¼ exp½ j2�z=��
ZZ1
�1

Fðx0; y0; 0Þ
ZZ1
�1

exp½�j��zð�2 þ �2Þ� exp½ j2�ð�ðx� x0Þ þ �ðy� y0ÞÞ� d� d�

8<
:

9=
; dx0 dy0

¼
exp½ j2�z=��

j�z

ZZ1
�1

Fðx0; y0; 0Þ exp
j�

�z
ððx� x0Þ2 þ ðy� y0Þ2Þ

� �
dx0 dy0 ð4Þ

The final expression of eq. (4) is known as the Fresnel diffraction integral (Fresnel transform).
The Hermite-Gaussian modes (Hermite-Gaussian beams) are a complete orthonomal set of solutions of the paraxial wave

equation.38) Let the nth-order Hermite-Gaussian mode be denoted by  nðxÞ. An important mathematical property of the
Hermite-Gaussian modes is that the Hermite-Gaussian mode expands the Fresnel transform kernel asX1

n¼0

e� jn� nðuÞ nðu0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j cot �

p
exp½ j�ðu2 cot �� 2uu0 csc �þ u02 cot�Þ�; ð5Þ

where the right side is a mathematically equivalent form of the kernel of the Fresnel diffraction integral of eq. (4). Let
� ¼ arctanðz=�zzÞ, u0 ¼ x0=W0 u ¼ x=WðzÞ, W2

0 ¼ � �zz and 1=ðz� j�zzÞ ¼ 1=RðzÞ þ j�=W2ðzÞ, where WðzÞ and RðzÞ denote the
beam size and the wavefront radius of curvature, respectively. Substituting these equations into eq. (5), with the aid of the
orthonormal property of the Hermite-Gaussian modes, we can easily obtain

exp½ jkz�
WðzÞ

 g

x

WðzÞ

� �
 h

y

WðzÞ

� �
exp jk

x2 þ y2

2RðzÞ
� jðgþ hþ 1Þ&ðzÞ

� �

¼
exp½ jkz�

j�z

ZZ
1

W0

 g

x0

W0

� �
 h

y0

W0

� �
exp

jk

2z
ððx� x0Þ2 þ ðy� y0Þ2Þ

� �
dx0 dy0;

ð6aÞ

where &ðzÞ is the Gouy phase shift defined by

&ðzÞ ¼ arctan
�z

W2
0

� �
: ð6bÞ

An arbitrary field on the input plane (z ¼ 0), Fðx0; y0; 0Þ, can be expanded by the Hermite-Gaussian modes as

Fðx0; y0; 0Þ ¼
X
g;h

Cgh

1

W0

 g

x0

W0

� �
 h

y0

W0

� �
; ð7Þ
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where W0 means the common width of the Hermite-Gaussian modes and Cgh is the complex coefficient (called the Hermite-
Gaussian transform coefficient). Then the diffraction field Fðx; y; zÞ is given, using eq. (6a), as

Fðx; y; zÞ ¼
X
g;h

Cgh

exp½ jkz�
WðzÞ

 g

x

WðzÞ

� �
 h

y

WðzÞ

� �
exp jk

x2 þ y2

2RðzÞ
� jðgþ hþ 1Þ&ðzÞ

� �
: ð8Þ

Then &ðzÞ indicates the Guoy phase.

2.2 Light field propagation
The mathematical model of the general optical system with a DOE is established in this subsection. Figure 1(a) shows the

schematic of the paraxial optical system with a DOE. A phase-only DOE placed in the input plane and a thin lens of focal
length f constitute the optical system. Let the distance from the DOE plane to the lens and that from the lens to the image
plane be d1 and d2, respectively. An incident coherent optical wave with wavelength of � impinges on the back of the DOE
and passes through the DOE with its phase modified. The modulated surface boundary field distribution generates a diffracted
field distribution in the output image plane or volume.

The optical wave propagation through the general optical system with a DOE can be described with the Fourier or the
Hermite-Gaussian mode representation. There are several mathematical models of the optical system.38) A popular one is the
linear canonical transform (LCT) called the generalized Fresnel transform.14,38) Also, the characteristics of the optical system
can be described in the phase space.38–40) In this case, the Wigner distribution of the complex field is transferred through the
optical system in a manner such that the light field transform is merely a geometrical rotation of the Wigner distribution in the
phase space. In some mathematical contexts, the optical system implements the fractional Fourier transform.38) With the
fraction Fourier transform description, the complex optical system with filters can be systematically designed and analyzed
with operator mathematics.

The LCT Fr½�� of the optical system shown in Fig. 1 takes the form

Fðx2; y2; zÞ ¼ Fr½Fðx1; y1; 0Þ; z� ¼
ZZ1
�1

Gðx2; y2; x1; y1; zÞFðx1; y1; 0Þ dx1 dy1; ð9Þ

where Fðx1; y1; 0Þ is the input field on the DOE plane (x1–y1 plane) and Fðx2; y2; zÞ indicates the 3D light field distribution in
the image volume. Gðx2; y2; x1; y1; zÞ is the kernel of the forward Fresnel transform given by

Gðx2; y2; x1; y1; z ¼ d1 þ d2Þ

¼
�j

�ðd1 þ d2Þ �
�d1d2

f

�����
�����
exp

j�

�ðd1 þ d2Þ �
�d1d2

f

1�
d1

f

� �
ðx22 þ y22Þ � 2ðx2x1 þ y2y1Þ þ 1�

d2

f

� �
ðx21 þ y21Þ

� �
8>>><
>>>:

9>>>=
>>>;
: ð10Þ

It is noted that when the focal length f of the lens is infinite, the propagator of the generalized Fresnel transform leads to the
free space propagator. When the output image plane is normal to the optical axis, the inverse Fresnel transform denoted by
Fr�1½�� can be expressed as

Fðx1; y1; 0Þ ¼ Fr�1½Fðx2; y2; z ¼ d1 þ d2Þ� ¼
ZZ1
�1

G�1ðx1; y1; x2; y2; d1 þ d2ÞFðx2; y2; d1 þ d2Þ dx2 dy2; ð11Þ

where G�1ðx1; y1; x2; y2; d1 þ d2Þ is the propagator of the inverse Fresnel transform given by

G�1ðx1; y1; x2; y2; d1 þ d2Þ

¼
j

�ðd1 þ d2Þ �
�d1d2

f

�����
�����
exp

�j�

�ðd1 þ d2Þ �
�d1d2

f

1�
d2

f

� �
ðx21 þ y21Þ � 2ðx2x1 þ y2y1Þ þ 1�

d1

f

� �
ðx22 þ y22Þ

� �
8>>><
>>>:

9>>>=
>>>;
: ð12Þ

Also, we can represent the diffraction field through the optical system in the Hermite-Gaussian-mode representations as
follows. Let

�qout ¼
Að�j� �zzÞ þ B

Cð�j� �zzÞ þ D
; ð13Þ

1

qout
¼

1

Routðd1; d2; f Þ
þ

j�

W2
outðd1; d2; f Þ

; ð14Þ

�out ¼ arctan
B

AW2
0

� �
; ð15Þ
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where A, B, C, and D are defined by A ¼ 1� d2= f , B ¼ �ðd1 þ d2Þ � �d1d2= f , C ¼ �1=ð� f Þ, and D ¼ 1� d1= f ,
respectively. Substituting eqs. (13)–(15) into eq. (5), we obtain the propagating Hermite-Gaussian-mode representation as

Fðx; y; d1; d2; f Þ ¼ Fr
1

W0

 g

x0

W0

� �
 h

y0

W0

� �� �

¼
exp½ jkz�

Woutðd1; d2; f Þ
 g

x

Woutðd1; d2; f Þ

� �
 h

y

Woutðd1; d2; f Þ

� �
exp jk

x2 þ y2

2Routðd1; d2; f Þ
� jðgþ hþ 1Þ&outðd1; d2; f Þ

� �
: ð16Þ

For practical optimization, both the field and the integral
transform according to the Nquist sampling condition must
be discretized. There are some fundamental limitations, such
as the spatial frequency bandwidth limitations induced by
the fixed optical frequency and the finite effective aperture
of the optical system that generates light fields. Due to the
bandwidth limitation, the light field can be sampled with a
certain sampling interval. This sampling problem of the 3D
light fields was thoroughly analyzed in refs. 19 and 22.
When computing the diffraction field with the Fresnel
transform, we can use the fast Fourier transform (FFT)
algorithm for efficient calcuation. It is noted that the
Hermite-Gaussian-mode expansion of the field distribution
enables us to discretize only the field since the mode
propagation is already obtained as shown in eqs. (6) and (7).
Because of this feature, the Hermite-Gaussian-mode repre-
sentation is advantageous, particularly, in the laser beam
shaping problem such as the generation of 3D nondiffracting
beams.20,22,23,41) The discrete Hermite-Gaussian modes are
well established. The Harper’s equation38) generates discrete
Hermite-Gaussian modes with completeness and orthogon-
ality.

3. Mathematical Modeling of Light Field Synthesis
Problem

In this section, the light field synthesis problem is
accounted for. At first, the definition of light field synthesis
is addressed, and then, the strategies for achieving the
solutions are discussed.

3.1 Definition of light field synthesis problem
The most fundamental question in light field synthesis is

what kind of light fields can be formed in free space.
Figure 2 shows a mapping between the k-vector domain
ðkx; ky; kzÞ and the space domain ðx; y; zÞ. The k-vector
domain is restricted to the surface of a sphere with radius of
2�=� . Furthermore, the k-vectors can exist in the small
region around the kz axis due to the constraint of the paraxial

rays. Before selecting the target object, we should predict
whether the target object can be expressed by the light field.
When the target object does not satisfy the wave equation,
the DOE design for generating the target object is, of course,
nonsense. For example, the Gaussian beam is a feasible 3D
structure that can be generated, but the complete non-
diffracting beam having nonvarying beam width along the
propagation cannot be supported in free space because the
complete nondiffracting beam does not satisfy the wave
equation. Furthermore, the fundamental question, ‘‘What
kinds of field distribution patterns can exist in the specified
3D space domain?’’, cannot be answered a priori. The
selection of the proper target object is based on expectation
and trial.

The field synthesis problem requires a mathematical
framework for optimization. In this section, the mathemat-
ical statement of the light field synthesis problem is
presented. The diffraction field generated by a DOE is
represented by the LCT in the Fourier representation:

Fðx2; y2; zÞ

¼
ZZ1
�1

Gðx2; y2; x1; y1; zÞAðx1; y1Þ expð j�ðx1; y1ÞÞ dx1 dy1;

ð17Þ

where Aðx1; y1Þ expð j�ðx1; y1ÞÞ ¼ Fðx1; y1; z ¼ 0Þ is the com-
plex field just after the DOE. In the ideal phase-only DOE,
the amplitude Aðx1; y1Þ is position-independent and has a
maximum value. However, in many real cases, it is
somewhat dependent on the phase, i.e., it can be written as
Aðx1; y1Þ ¼ Að�ðx1; y1ÞÞ. This kind of modulation occurs
in surface relief dielectric DOEs due to internal multiple
reflections31) and in liquid-crystal-phase SLMs. In the
Hermite-Gaussian-mode representation, the light field on
the DOE is described by

Að�ðx1; y1ÞÞ expð j�ðx1; y1ÞÞ

¼
X
g;h

Cgh

1

W0

 g

x1

W0

� �
 h

y1

W0

� �
; ð18Þ

and its diffracted field is represented by eq. (16).
Basically, the light field synthesis problem can be

classified into three categories, as indicated in Fig. 1.
Figures 1(a) and 1(b) indicate the 2D domain intensity
distribution synthesis problem and the 3D domain intensity
distribution synthesis problem, respectively. In Fig. 1(c), the
3D image synthesis problem is shown. The intensity
distribution is proportional to the absolute square of the
light field in the spatial domain. That is, in most applica-
tions, we have only the desired amplitude pattern of the light
field, and hence, we have a degree of freedom in choosing
the phase of the light field in the output image plane (or

xk

yk

z

x

y

?3D Fourier
transform

2 2
xk k+ 2

yk + 2
zk

zk

=

Fig. 2. Mapping from 2D paraxial k-vector surface to 3D space domain.
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volume). If a photosensitive medium fills the image volume,
the medium can record the spatial field intensity profile. In
the 3D domain intensity distribution problem, only the 3D
intensity structures of the light fields in the specified spatial
domain are mainly considered. The 3D image synthesis is
not the simple intensity distribution synthesis in the 3D
domain. In Fig. 1(c), it is indicated that different observers

in different positions feel different perspectives. The 3D
image synthesis requires some specific objective constraints
regarding the multiple viewing directions.42)

For numerical computation, in both Fourier and Hermite-
Gaussian mode representations, the field is discretized on
computation grids. The computation grids at the input and
2D output domains are, respectively, set to

ðx1;k; y1;lÞ ¼ �
N þ 1

2
þ k

� �
�x1; �

N þ 1

2
þ l

� �
�y1

� �
; for k; l ¼ 0; 1; . . . ;N; ð19aÞ

and

ðx2;p; y2;qÞ ¼ �
N þ 1

2
þ p

� �
�x2; �

N þ 1

2
þ q

� �
�y2

� �
; for p; q ¼ 0; 1; . . . ;N; ð19bÞ

where �x1 (�x2) and �y1 (�y2) are the sampling intervals of the x-axis and the y-axis in the DOE domain (the output
domain). Then, the integral of eq. (17) is discretized as

Fp;q ¼
X
k;l

Gp;q;k;lAð�k;lÞ expð j�k;lÞ: ð20Þ

For convenience, the 2D notation is changed to one-dimensional notation by setting m ¼ ðp� 1ÞN þ q and n ¼
ðk � 1ÞN þ l. Then, Fp;q, �k;l, and Gp;q;k;l are denoted by Fm, �n, and Gmn, respectively. Then eq. (20) reads as

Fm ¼
XN2

n¼1

GmnAð�nÞ expð j�nÞ: ð21aÞ

This equation can be expressed in the matrix form

F1

F2

..

.

FN2

2
66664

3
77775 ¼

G11 G12 � � � G1N2

G21
. .
.

..

. . .
.

GN21 GN2N2

2
6666664

3
7777775

Að�1Þ expð j�1Þ
Að�2Þ expð j�2Þ

..

.

Að�N2 Þ expð j�N2Þ

2
66664

3
77775: ð21bÞ

In the Hermite-Gaussian mode representation, using r ¼ ðg� 1ÞN þ h, the light field just after the DOE and the diffraction
field are, respectively, represented as

Að�nÞ expð j�nÞ ¼
X
r

CrHG
ð0Þ
n;r; ð22aÞ

and

Fm ¼
X
r

CrHG
ðzÞ
m;r; ð22bÞ

where HGðzÞ
m;r is defined by

HGðzÞ
m;r ¼

exp½ jkz�
WoutðzÞ

 g

xp

WoutðzÞ

� �
 h

yq

WoutðzÞ

� �
exp jk

ðx2p þ y2qÞ
2RoutðzÞ

� jðgþ hþ 1Þ&outðzÞ

" #
: ð22cÞ

These equations become the matrix forms

Að�1Þ expð j�1Þ
Að�2Þ expð j�2Þ

..

.

Að�N2 Þ expð j�N2 Þ

2
666664

3
777775 ¼

HGð0Þ
1;1 HGð0Þ

1;2 � � � HGð0Þ
1;N2

HGð0Þ
2;1

. .
.

..

. . .
.

HGð0Þ
N2;1

HGð0Þ
N2;N2

2
66666664

3
77777775

C1

C2

..

.

CN2

2
666664

3
777775 ð23aÞ

and

F1

F2

..

.

FN2

2
666664

3
777775 ¼

HGðzÞ
1;1 HGðzÞ

1;2 � � � HGðzÞ
1;N2

HGðzÞ
2;1

. .
.

..

. . .
.

HGðzÞ
N2;1 HGðzÞ

N2;N2

2
66666664

3
77777775

C1

C2

..

.

CN2

2
666664

3
777775: ð23bÞ
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The Haper’s equation generates the orthonormal set of discrete Hermite-Gaussian transform indicated in eq. (22b). The
coefficients Cr are the bridge between the input field and the output field. From eqs. (21b), (23a), and (23b), we can see that

G11 G12 � � � G1N2

G21
. .
.

..

. . .
.

GN21 GN2N2

2
6666664

3
7777775

¼

HGðzÞ
1;1 HGðzÞ

1;2 � � � HGðzÞ
1;N2

HGðzÞ
2;1

. .
.

..

. . .
.

HGðzÞ
N2;1

HGðzÞ
N2;N2

2
66666664

3
77777775

HGð0Þ
1;1 HGð0Þ

1;2 � � � HGð0Þ
1;N2

HGð0Þ
2;1

. .
.

..

. . .
.

HGð0Þ
N2;1

HGð0Þ
N2;N2

2
66666664

3
77777775

�1

: ð24Þ

In the 3D domain synthesis, the matrix form is extended,
from eq. (21b), to

F1

F2

..

.

FL

2
66664

3
77775 ¼

G1

G2

..

.

GL

2
66664

3
77775U; ð25aÞ

where Fi ¼ GiU is the discrete Fresnel transform at the ith
sliced image plane and is equivalent to eq. (21b). In this
formulation, the simplest definition of the intensity distri-
bution synthesis problem is the minimization of the
objective function

E ¼
X
i

wi distðFi; IiÞ; ð25bÞ

where wi is the weight factor, Ii is the target intensity pattern
at the ith sliced image plane and distðFi; IiÞ denotes the
objective function for the ith sliced image plane.

3.2 Objective functions for intensity distribution synthesis
In the light field synthesis problem, optimization proc-

esses are inevitable. For successful optimization, the correct
objective function structure, the manifestation and the
utilization of degrees of freedom and stable optimization
algorithms must be confirmed.

In this subsection, the objective function for intensity
distribution synthesis is discussed. The abstract objective
function distðFi; IiÞ stated in the previous subsection is
constructed here. The light field synthesis problem is an ill-
posed problem because a solution satisfying all the con-
straints may not exist or, if it exists, it may not be unique.
Hence, in obtaining the solutions, it is possible to control the
balance of a few evaluation factors by specifically designing
the objective function.

First, we inspect the objective function of the 2D domain
synthesis problem. The 2D spatial domain indicates a flat
image plane normal to the optical axis or an arbitrarily
curved surface.17,18) In ref. 7, Wyrowski overcame the
stagnation of the classical Gerchberg–Saxton algorithm by
exploiting the amplitude degree of freedom. Kotlyar et al.
showed that Wyrowski’s improved algorithm can be derived
from the specified designed objective function.8) There are
several quality measures of the synthesized light field
distribution. The common quality measures are mean square
error (MSE), uniformity and diffraction efficiency (DE),
which can be defined differently according to the specifica-
tions of individual problems.5,6) Later, it was shown that the
trade-off between diffraction efficiency and uniformity of the
resulting diffraction image can be lessened by using the

Tikhonov regularization technique.14,15)

The relationship between the light field at the DOE
domain and the 2D image surface is given by eq. (21b).
Then the objective function takes the form

distðF; IÞ ¼
X
�S

jjFj �
ffiffi
I

p
j2 þ �S

X
�S

jFj2

þ �N
X
�N

jFj2; ð26aÞ

where �S and �N indicate the signal area and the noise area,7)

respectively, F is the designed light field pattern, I is the
objective intensity distribution, and �S and �N are regula-
rization parameters.14) In Fig. 3, the trade-off between
diffraction efficiency and uniformity of the obtained dif-
fraction image in the iterative Fourier transform algorithm
(IFTA)-based DOE design is illustrated. It is noted that as
the diffraction efficiency increases, the uniformity degrades.
In this design example, the objective image is a square
uniform-intensity pattern, and a smaller value of uniformity
means the diffraction intensity pattern is more uniform, as
will be shown below.

The trade-off can be mitigated by the application of the
Tikhonov regularization technique. When the first-order
Tikhonov regularization form is employeed,14) the objective
function is

distðF; IÞ ¼
X
�S

jjFj �
ffiffi
I

p
j2 þ �S

X
�S

jFj2 þ �N
X
�N

jFj2

þ �D
X
�S

½ð@xjFjÞ2 þ ð@yjFjÞ2�; ð26bÞ
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the trade-off between diffraction efficiency and uniformity. The number
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where @x and @y denote partial derivatives with respect to
x and y axes, respectively, and �D is a regularization
parameter. For general cases including gray images, the
definition of the uniformity U is defined as10)

U ¼
jjFj �

ffiffi
I

p
þ "jmax � jjFj �

ffiffi
I

p
þ "jmin

jjFj �
ffiffi
I

p
þ "jmax þ jjFj �

ffiffi
I

p
þ "jmin

; ð27Þ

where " is the bias parameter that must be selected to make
the inner terms positive (" >

ffiffi
I

p
� jFj). The measure of

uniformity is indirectly but strongly related to the additional
Tikhonov function in eq. (26b). In other words, the
Tikhonov function is an analytic alternative for improving
the uniformity. The minimization of the first derivative
terms leads to improvement in the uniformity. The more
explicit objective function that cannot be handled by analytic
manipulation but can be handled by a numerical method
takes the form

distðF; IÞ ¼
X
�S

jjFj �
ffiffi
I

p
j2 þ �S

X
�S

jFj2

þ �N
X
�N

jFj2 þ �U; ð28Þ

where � is the weight factor of the uniformity.
In the example in Fig. 3, the trade-off is mitigated by the

adaptive regularization parameter distribution (ARPD) tech-
nique, which is described in the next section. This mitigation
means that at a certain diffraction efficiency, a more
improved uniformity can be obtained.

A comparison of the performances of a few variants of
eq. (26b) for the trade-off between the diffraction efficiency
and uniformity can be found in ref. 14.

Basically, the objective function of the 3D beam-shaping
problem is to determine the sliced image volume. The
objective function is straightforwardly extended from
eq. (26b) to the 3D domain problem as

distðF; IÞ ¼
X
i

wi

"X
�S

jjFij �
ffiffiffi
Ii

p
j2 þ �S;i

X
�S

jFij2

þ �N;i
X
�N

jFij2 þ �D;i
X
�S

½ð@xjFijÞ2 þ ð@yjFijÞ2�

#
; ð29Þ

where the subscript index i indicates the ith sliced image
plane. The most important task is defining the objective
function. However, the degree of freedom in the 3D domain
problem is not easy to use. It is uncertain whether the target
intensity distribution satisfies the 3D wave equations in free
space. However, generally speaking, all areas outside the
predefined signal region can be considered to be freedom
areas irrespective of whether the synthesis problem is 2D
or 3D.

3.3 Objective function for 3D display
A specially designed 3D field distribution can provide the

realization of 3D images to observers.42–44) The holographic
method for displaying 3D images is perceived as an ultimate
solution.45) The CGH for generating 3D images has been
considered a promising technology and has been intensively
researched to overcome technological limitations.

In fact, there are several methods of floating the 3D image
in free space. Figure 1(c) shows the schematic of the 3D
display. The most unique property of the 3D display is that

an observer sees different views of the images at different
viewing positions and feels the volumetric effects of the
generated 3D object images. Therefore a special objective
function different from that of the intensity distribution
synthesis problem is required.

There are many numerical algorithms for designing CGH
for 3D display. They include the ping-pong algorithm,46–49)

the coherent ray trace algorithm,46) and the diffraction
specific algorithm.50) A recently proposed Fourier-type CGH
design method with many different angular projections42–44)

is also an important technique. In the conventional CGH
design, the physical modeling of holography is employed.
Then CGH is synthesized by encoding interference fringes
of the diffraction field generated by a target 3D object.
However, in this method, both the amplitude and phase of
the reference beam(incident wave) must be modulated. If the
CGH is a phase-only element, the simple interference fringe
synthesis method is not appropriate. The phase-only holo-
gram cannot be directly obtained from the interference
fringe calculation. The phase-only constraint requires in-
tensive optimization techniques and well-designed objective
functions.

Since the 3D image should provide obscuration and
volumetric effects, the objective function of the 3D light
field distribution is not as easy or intuitive as that of the
intensity distribution synthesis. To realize 3D-image proper-
ties, the specific propagation directions of a pencil of rays
that pass through a focal point in free space should be
controlled. The phase-only hologram synthesis trials for
generating stereoscopic images or elemental images for
integral imaging have been reported recently.51–53) Never-
theless, to our knowledge, the objective function structure
for phase-only CGH generating the full-parallax 3D image
synthesis problem has not been reported and requires further
study. We believe one good way is to study the method of
designing CGHs that would show a 2D elemental image
array that reveals different perspectives assuming an
imaginary 2D lens array, as shown in Fig. 4. Figure 4(a)
represents the design stage of CGH for 3D images. The
precalculated elemental image of the target 3D object is set
to the target image for the optimization of CGH. The
mathematical modeling of light field propagation from the
CGH plane to the image plane through the imaginary lens
array is the first task in the design. In Fig. 4(b), the display
stage is shown. In the display stage, an observer can see a 3D
image floating in the image volume since the light field that
generates the elemental image in the image plane behind the
lens array should have full parallax stereoscopic and
volumetric effects in the image volume.

3.4 Mathematical methods for solving synthesis problem
The objective functions defined in the previous subsec-

tions can be minimized using the proper optimization
algorithms. When selecting a numerical optimization algo-
rithm, several factors, such as available memory, computing
time, and convergence property, are taken into account. As
the objective function, the most efficient iterative algorithm
should be selected in the practical optimization.

The optimization methods can be categorized into
iterative methods and stochastic methods. Representatives
of the stochastic methods are the direct binary search
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method,54) the simulated annealing,55) and the genetic
algorithm.56) However, in this paper, the mathematical
iterative methods, the projection type optimization method
and the conjugate gradient method, are mainly focused on.

3.4.1 Iterative projection method
Piestun and Shamir explained that many iterative methods

for light field synthesis are included in the more general

concept of the generalized projection or block-projection
methods.22) The iterative Fourier transform algorithm
(IFTA),7,57,58) ping-pong algorithm, input–output algorithm4)

are examples of the specific forms of the projection
algorithm.

For the 2D domain intensity distribution, the iterative
projection algorithm for the objective function, eq. (26a),
which is called IFTA, can be derived to take the form15)

�FFn ¼
�F0 expð j�nÞ þ 1� � � �

2	

�
tan�1 jFnðx; yÞj � F0ðx; yÞ

F0ðx; yÞ

� �
þ 	 � 1

� �� �
Fn for ðx; yÞ 2 �S

Fn for ðx; yÞ =2 �S

8<
: ; ð30Þ

where � is the relaxation parameter and �S indicates the
signal area. See Fig. 5 for other notations. The contraint to
be satisfied is that the light field must have the form of
Að�ðx1; y1ÞÞ expð j�ðx1; y1ÞÞ at the DOE domain. The
ðnþ 1Þth signal Fnþ1 is obtained by applying the error-
reduction operator as

Fnþ1 ¼ Fr½DDOE½Fr�1½ �FFn���; ð31Þ

where Fr½�� denotes the Fresnel transform and the operator
DDOE½�� expresses the surface boundary condition in the
DOE plane as

(a)

f

CGH

Lens

Image volume

Incident light

(b)

2d

1d

f

CGH

Lens

Lens array

Target image

Image plane Fig. 4. (a) Design stage (recording stage) of DOE for

3D image assuming an imaginary two-dimensional

lens array. The precalculated elemental image of the

target 3D object is the target image for DOE

optimization. (b) In the display stage, without the

lens array, observers can see a 3D image floating in

the image volume.

( ) ( )expn n nF Fr A Φ Φj=

–1
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Fig. 5. Diagram of iterative Fourier transform algorithm.
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DDOE½H� ¼
AðargðHÞÞ exp½ j argðHÞ� ðu; vÞ 2 �

0 ðu; vÞ =2 �

�
; ð32Þ

where � denotes the encoding area in the DOE plane and
argðHÞ is the phase function of the complex function H. The
iterative algorithm described with eqs. (30) and (31) is
shown schematically in Fig. 5. The form of IFTA is
equipped with the ARPD that modifies the diffraction image

adaptively according to the difference, jFnðx; yÞj � F0ðx; yÞ,
as shown in eq. (30). Figure 6 shows the intensity distribu-
tions of the diffraction images generated by the DOE
designed with the simple objective function and with the
objective function with the ARPD.15) An improved algo-
rithm derived from the objective function of eq. (26b) is
expressed as14)

�FFn ¼
�F0 expð j�nÞ þ 1� � � �

2	

�
tan�1 jFnðx2; y2Þj � F0ðx2; y2Þ

F0ðx2; y2Þ

� �
þ 	 � 1

� �� �
Fn þ ��Dr2jFnj expði nÞ

for ðx2; y2Þ 2 S

ð1� ��NÞFn for ðx2; y2Þ =2 S

8>>><
>>>:

: ð33Þ

This algorithm is devised to improve the mitigation of the
trade-off between diffraction efficiency and uniformity. The
numerical results related to these algorithms can be found
in ref. 14. Figure 7 shows examples of the 2D domain
intensity distribution synthesis using the IFTA.9) This figure
shows that the aperture shape of the DOE is another design
factor in the generation of diffraction images without phase

dislocations. Many phase dislocations appear in the resulting
diffraction image with the circular aperture DOE, as
indicated in Figs. 7(a) and 7(b). However, the modification
of the aperture shape, as in Fig. 7(c), leads to the elimination
of phase dislocations as shown in Fig. 7(d).

While the problem of generating arbitrarily patterns on
one plane is well established, the 3D domain intensity

(a) (b)

(c) (d)

Fig. 6. (a) Intensity distribution of the square image generated by the DOE with (b) the phase profile obtained using the conventional

IFTA. (c) Intensity distribution of the square image generated by the DOE with (d) the phase profile obtained by the IFTA with

ARPD.15)
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distribution synthesis problem had not been tackled until
recently. Piestun et al. proposed a parallel block-projection
scheme to minimize eq. (25b). Its feasibility was shown in
several works.19–22) In the 3D domain intensity distribution
synthesis problem, the iterative parallel projection method is
used. In this method, at each iteration stage, diffraction
images at all sectioned output planes are improved by the
multiple use of the 2D algorithm. In particular, the Hermite-
Gaussian-mode representation is appropriate for the 3D
beam-shaping problem. An interesting example of 3D light
field synthesis for a propagation-invariant rotating beam
based on the Hermite-Gaussian-mode representation can be
found in ref. 22.

3.4.2 Nonlinear conjugate gradient method
When, fortunately, the analytic form of the inverse

transform exists, without the heavy burden of numerically
computing the inverse matrix, we can run the iterative 2D
projection algorithm using FFT. When the image surface is
arbitrarily curved, the 3D projection algorithm is needed.
However we can use another and somewhat direct optimi-
zation methods such as the nonlinear conjugate gradient
method (NCGM)59) with the 2D-domain model. The output
surface is represented by the defocus distribution sðx2; y2Þ in
the x2y2z coordinate, as shown in Fig. 8(a). Then the
relationship between the DOE plane and the output plane

can be represented by adding the output surface profile
sðx2; y2Þ to d2 in eqs. (9) and (10). Therefore, the forward
propagation transform exists, but the analytic form for the
inverse propagation transform does not exist because of the
non-invertible property of the forward transform. In this
case, the projection-type algorithm should be a 3D algo-
rithm. Also, the numerically forced inversion of the forward
transform uses much memory.

The NCGM provides a more general treatment than the
projection method for the generalized objective function of
eq. (29) as well as the 2D objective function of eq. (26a).
Let the objective function be the weighted MSE as

distðF; IÞ ¼
X
m

wðmÞ
X
n

GmnAð�nÞ expð j�nÞ

�����
������ ffiffiffiffiffi

Im
p

" #2

;

ð34Þ

where eq. (21a) is substituted into eq. (26a) with �S and �N
set to zero. In the NCGM procedure, the obtained result
reflects the structure of the specified weight factor distribu-
tion wðmÞ precisely. By default, the weight distribution wðmÞ
is structured by wðmÞ ¼ 1 for IðmÞ 6¼ 0, and wðmÞ ¼ 0 for
IðmÞ ¼ 0. The key in the NCGM is the calculation of the
gradient vector of the objective function. Let the function
Mm be defined as

(c)

(a)

(d)

(b)

Fig. 7. (a) Phase profile of the conventional DOE with no aperture apodization and (b) its generated diffraction image revealing some

phase dislocations. (c) Phase profile of the DOE with apodized aperture and (d) its resulting diffraction image without phase

dislocations.9)
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Mm ¼
XN2

n¼1

GmnAð�nÞ expð j�nÞ

�����
�����
2

: ð35Þ

The gradient vector of the objective function distðF; IÞ takes
the form

r distðF; IÞ ¼
@ dist

@�1
;
@ dist

@�2
; . . . ;

@ dist

@�n

� �
; ð36Þ

where each component @ dist =@�n is given by

@ dist

@�n
¼
XN
m¼1

1�
Imffiffiffiffiffiffiffi
Mm

p
� �

@Mm

@�n
; ð37aÞ

where @Mm=@�n is obtained as

@Mm

@�n
¼ 2jGmnj2Að�nÞ

@Að�nÞ
@�n

þ 2Re
@Að�nÞ
@�n

expð j�nÞGmnðF�
m � G�

mnAð�nÞ expð�j�nÞÞ
� �

� 2 Im½Að�nÞ expð j�nÞGmnðF�
m � G�

mnAð�nÞ expð�j�nÞÞ�;
ð37bÞ

where Re½�� and Im½�� indicate the real part and the
imaginary part of complex number, respectively. In the
standard NCGM, the DOE phase profile �k can be obtained
by the following iteration procedure. The phase profile �k at
the ðk þ 1Þth iteration stage is updated through the form

�kþ1 ¼ �k þ �kdk; for k ¼ 0; 1; 2; . . . ð38Þ

where �k and dk denote the step size and the search direction
vector, respectively, at the ðk þ 1Þth iteration stage. The
search direction vector dk is given by

dk ¼ �r distðFð�kÞ; IÞ þ �k�1dk�1; ð39Þ

where the Fletcher–Reeves formula is used to set �k�1 to

�k�1 ¼
jr distðFð�kÞ; IÞj2

jr distðFð�k�1Þ; IÞj2
: ð40Þ

The step size �k is determined to minimize the objective
function distðFð�kþ1Þ; IÞ with the aid of the bracketing
algorithm and the golden section search algorithm.59)

Figures 8(b) and 8(c) show an example of DOE design
using the NCGM. It is assumed that the diffraction image is
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Fig. 8. (a) Problem of forming a desired diffraction image on an arbitrarily curved surface. (b) Example of a curved (defocus) surface

sðx; yÞ. (c) Intensity distribution on the curved output surface of the diffracted field generated by the DOE optimized by the NCGM.
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formed on an arbitrarily curved surface, as shown in
Fig. 8(b). The resulting intensity distribution on the curved
output surface of the diffracted field generated by the DOE
optimized by the NCGM is shown in Fig. 8(c). Another
example of axial-intensity distribution synthesis with the
NCGM can be found in ref. 60.

4. Diffractive Optic Analysis for Subwavelength DOEs
and Surface Plasmon Polaritons

In this section, rigorous diffractive optic analysis methods
for subwavelength DOEs and surface plasmon polaritons are
described.

The diffraction phenomena in the subwavelength and
nanoscale optical regime are not trivial and will not lead to
the usual results expected from a simple diffraction grating
theory. These restrictions of diffraction-limited optics in
the subwavelength diffraction regime have been a crucial
constraint in nanoscale optical imaging, sensing and nano-
photonic circuit applications. Recently, they have been
increasingly focused on and are playing important roles in
nanoscale sciences and biophotonic applications.

These diffraction phenomena can be rigorously analyzed
by electromagnetic methods that can be classified into two
classes. The first is frequency domain methods and the
second is space domain methods. In the frequency domain
method, the electromagnetic field and the structures of the
permittivity "ðrÞ and permeability 
ðrÞ are represented in
Fourier space. As a result, the Maxwell equation is solved in
Fourier space. The rigorous coupled wave analysis (RCWA)
method35–37,61,62) and Fourier modal analysis method63,64) are
representatives of frequency domain methods. The scattering
matrix method (S-matrix method)65) is usually combined
with the RCWA for analyzing multi-layered structures. The
finite difference time domain (FDTD) method is representa-
tive of time domain methods.66) In the FDTD, the Maxwell
equation is solved in space time by the discretization.

Figure 9 shows two binary subwavelength grating struc-
tures and their wavefront modulation characteristics ana-
lyzed by the RCWA. In Figs. 9(a) and 9(b), two comparable
subwavelength grating structures are shown. The grating
structure in Fig. 9(a) has a different fill factor in each cell
and the grating structure in Fig. 9(b) has a different fill factor
and tilt angle varying in each cell. The phase distribution of
the y-component of the electric field Ey and the amplitude
distribution of the electric field Ex modulated by the grating
structure in Fig. 9(a) are illustrated in Figs. 9(c) and 9(e),
respectively. The phase and amplitude distributions modu-
lated by the grating structure in Fig. 9(b) are shown in
Figs. 9(d) and 9(f), respectively. We can see that the fill
factor and the tilt angle modulate the phase and the
amplitude of the incident optical wave, respectively. In
Figs. 10(a) and 10(b), the phase modulations and the
amplitude modulations for several values of the fill factor
and the tilt angle are shown. We can obtain wide ranges of
phase and amplitude modulations by adjusting the fill factor
and the tilt angle by using different subwavelength binary
gratings.

It is well known that metallic subwavelength structures
generate and support surface plasmon polaritons. A surface
plasmon polariton is an electromagnetic surface-bound wave
(p-polarized, transverse-magnetic) propagating along the

interface between metal and dielectric layers. The metal
behaves like a plasma, having equal amounts of positive and
negative charges, of which the electrons are mobile. The
bound wave has an evanescent field, which decays expo-
nentially perpendicular to the surface. It can be produced by
photons in the well-known Kretchmann–Raether attenuated
total reflection (ATR) device. Surface plasmons have played
a significant role in a variety of areas of fundamental and
applied research67,68) (from surface-sensitive sensors69) to
surface plasmon resonance microscopy70)), surface plasmon
resonance technology,71) and a wide range of photonic
applications.72)

For source beam modeling, we use the angular spectrum
representation and the Fourier representation of temporal
pulses. For the structure analysis, the RCWA and the S-
matrix method are used. Let us briefly explain the source
beam modeling. A pulsed Gaussian beam with the beam
radius of � and the pulse duration of T can be represented by
the following angular spectrum representation:

Eðx; y; z; tÞ ¼ x̂xEx þ ŷyEy þ ẑzEz; ð41aÞ

where ðEx;Ey;EzÞ is given by

ðEx;Ey;EzÞ ¼
1

T

Z �=T
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2�

!
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� �2

Atð!Þe� j!t

�
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�2þ�2<1

Z
ðAxx̂xþ Ayŷyþ AzẑzÞ

� exp �
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!

c
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 !
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!

c
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Figure 11(a) shows the surface plasmon resonantly ex-
cited at a dielectric–metal boundary by a 3D finite Gaussian
beam. The metal thickness, the beam radius, the incidence
angle and the material refractive index are set to 40 nm,
2 mm, 46.41�, and 1.46, respectively. The propagation length
of the plasmon wave is measured to be more than 20 mm. It is
shown that the damping radiation loss as well as the ohmic
loss on the metal surface is a dominant loss factor.
Figure 11(b) shows the pulsed surface plasmon resonantly
excited by a 3D finite Gaussian pulse. The pulse width and
the pulse period are set to 2 and 5 fs, respectively. The
pulsed damping radiation as well as the pulsed surface
plasmon can be observed in Fig. 11.

The FDTD method, as a time-domain computational
solution of Maxwell equations, is also a powerful full-vector
computation method for the Maxwell equations. The FDTD
method has also been widely used for analyzing the
electromagnetic phenomena throughout the entire range
from microwave to X-ray optics. Figure 12 shows an FDTD
simulation result of a poly(methyl methacrylate) (PMMA)-
based metal lamellar grating structure. A thin metal coating
is deposited on the PMMA lamella binary grating structure.
We believe that this PMMA–metal grating structure can be
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applied as a polarization-dependent multiple beam splitter
and combiner with surface plasmon resonance (SPR)
excitation.

5. Applications

These days, diffractive optics applications are rapidly
advancing in information technologies (IT), nanotechnolo-
gies (NT), and biotechnologies (BT). The developments of
computers and of semiconductor lithography technologies
have made it possible to calculate and fabricate increasingly
complicated DOEs. Some rapidly growing branches of

diffractive optics applications are bio-optical information
processing, subwavelength-scale near-field optical imaging
and plasmonics, nanofabrication, and high-capacity optical
data pickup/storage. Figure 13 shows some examples of
DOEs in a grating-based DNA chip structure,73,74) dynamic
holographic optical tweezer system,75,76) and high-capacity
multilayered diffractive optical data pickup device.77,78)

Diffractive optics also has many industrial applications,
such as in a laser beam splitter/combiner,79) Gaussian laser
beam pattern generator,80,81) and input/output beam coupler
for optical fiber communication.82,83) Some multiple beam
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Fig. 9. (a) Grating structure with various fill factors. (b) Grating structure with various fill factors and tilt angles. (c) Phase distribution

of Ey modulated by the grating shown in (a). (d) Phase distribution of Ey modulated by the grating shown in (b). (e) Amplitude

distribution of Ex modulated by the grating shown in (a). (f) Amplitude distribution of Ex modulated by the grating shown in (b).
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splitters are useful in high-power laser material process-
ing.84) Other industrial applications include solar cells and
precision alignment applications in space-optic technolo-

gies.85–87) In IT, it is possible to use DOEs in different ways.
Apart from classical applications in optical spatial filter-
ing,88–90) DOEs can be used as acousto-optic91) or electro-

(a)

(b)

Fig. 11. (a) Resonant excitation of surface plasmon by a finite Gaussian beam. (b) resonant excitation of pulsed surface plasmon by a

finite Gaussian pulse.

Fig. 12. FDTD simulation result of a PMMA-based metal lamellar grating structure. The following parameters were used in the

calculations. The dielectric constant of the SiO2 prism was 2.1316. The plasma frequency and collision frequency were 1558THz

and 978THz for the incident wavelength of 532 nm, respectively. The period of the metal lamellar grating was 1061 nm and the

dielectric constant of the PMMA layer was 2.2201.
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Fig. 10. (a) Phase modulations and (b) amplitude modulations for several values of fill factor and tilt angle.

Jpn. J. Appl. Phys., Vol. 45, No. 8B (2006) H. KIM et al.

6569



optic92) diffractive elements in optical signal processing,
real-time optical pattern correlation, and optical intercon-
nection or wavelength division multiplexing in optical
communication and computing.93–98)

In the following subsections we discuss some examples of
diffractive optics applications.

5.1 Dynamic modulation for IT
The need for reconfigurable optical components is ever

increasing in optical computing and communication systems
to efficiently handle the dynamic optical functions in 3D
display, optical interconnection, switching, filtering, and
computing logic operation. The advances in liquid crystal
(LC) materials and very large scale integration (VLSI)
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technology have enabled the development of multiphase
SLMs that can enable high-resolution, dynamic optical beam
positioning, shaping, and imaging.99) Now, 2D amplitude-
and phase-type SLMs are commercially available (for
example, Hamamatsu PPM8267 and Holoeye LC2002).

Recently, a reconfigurable optical interconnection system
(OCULAR-II) and a holographic optical switching system
(ROSES) have been demonstrated using the LC-
SLMs.100,101) Much research on an optical perfect-shuffle
network system (PSNS) has been proposed and some were
implemented using the multistage interconnection network
systems composed of light source arrays and classical
refractive, reflective, and diffractive elements.102–104) How-
ever, these elements present the disadvantages of high cost,
large element volume, heavy weight, limited flexibility, and
low energy efficiency. The availability of reconfigurable
interconnects can greatly improve the ability of the optical
PSNS to perform different tasks. Such components can also
reduce the number of active switching-element arrays and
eliminate the light source array. When a phase-only material
is used, the energy loss can be greatly reduced. Therefore,
the holographic phase elements will have potential applica-
tions in parallel optical computing and communication
systems. The multiplexed phase holograms have an advant-
age that multiple and complex optical functions can be
superimposed in same element. For this reason, we proposed
and implemented a dynamically reconfigurable optical
single-stage PSNS using only one phase-type SLM with
optimized high-performance multiplexed phase holo-
grams.105)

High-precision alignment and aberration compensation
are fundamental requirements for implementing light field
synthesis with SLM. Using the dynamic property of the
SLM, adaptive tuning and aberration compensation can be
achieved. Figure 14 shows the genetic feedback tuning loop
that was proposed by us.106) The initial phase profile is
calculated with a design algorithm such as IFTA, which does
not take the internal misalignment and aberration into

account. However, if the optical system has misalignment or
aberration, the resulting diffraction image is distorted, as
indicated in Fig. 14. We proposed the feedback loop
structure shown in Fig. 14, in which the genetic algorithm
is employed for optimizing the Zernike polynomial phase
profile to compensate the aberration of the optical system. In
the system in Fig. 14, we intentionally applied 10� rotations
to the lens and charged-coupled device (CCD) camera to
prove robustness against misalignment. The gradual com-
pensation by the genetic algorithm in the feedback loop
results in a corrected diffraction image, as indicated in
Fig. 14. This genetic feedback tuning loop can be a
fundamental technique for implementing a high-precision
dynamic light field synthesis system with SLM.

Also, the dynamic phase-type SLM can be used for 3D
display systems such as some electro-holography systems.
Recently, we proposed and implemented a dynamic full-
color autostereoscopic 3D display system using color-
dispersion compensated (CDC) synthetic phase holograms
(SPHs)52) and a full parallax viewing-angle-enhanced CGH
3D display system using an integral lens array and single-
phase-type SLM.51) These schemes may have advantages in
cost-effectiveness, high light source utilization efficiency,
and controllable color fidelity without the use of any color
filters. The CDC SPHs designed for elemental image
reconstruction were experimentally implemented using a
simple Fourier optics system employing a phase-type SLM,
two laser diode sources (for color 3D image display), an
achromatic lens, a projection lens module, and an integral
lens array. Figure 15 shows the optical setup of a full-color
multiviewer dynamic stereoscopic system adopting a single
SLM.

5.2 Diffractive optics for dynamic 3D laser writing
The direct laser writing technique has many advantages

over the electron-beam writing technology for the fabrica-
tion of large DOEs on an arbitrary 3D surface with precise
alignment. Some well-known characteristics are fast proc-
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Fig. 14. The configuration of the SLM light field synthesis system with the genetic feedback tuning loop for compensating the internal

aberration or misalignment of the optical system.106)
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essing, low fabrication cost without the need for clean room
facility, simplicity and excellent fabrication quality. The
prime advantage of the direct laser writing technique is that
it is a maskless lithographic process. The direct laser writing
technology can be further developed to allow the generation
of massive parallel writing beams for mass production.
Direct laser writing systems have been well described by
Gale et al.107–109) The ‘‘Laser Writer III’’ (CSEM) is based on
a high precision xy raster scan of the photoresist-coated
substrate under a focused HeCd laser beam of wavelength
442 nm. The raster scan is performed by a roller-bearing xy-
stage with a dynamic line-positioning accuracy of about

35 nm rms. The laser writing spot is generated by a modified
CD reader autofocus optics which produces a spot with a
diameter of about 1.5 mm. The spot intensity is modulated by
an electrooptic modulator fed by 8-bit (256 level) data.

If we use a 2D electrooptic modulator such as SLM and a
near-field imaging system, we believe that the spot diameter
can be reduced to a subwavelength scale and some 3D
patterns can be directly fabricated with high resolution at a
fast speed over a large area. We consider an upgraded laser
writing system using 2D reconfigurable CGH on a phase-
type SLM with a subwavelength optical imaging system, as
shown in Fig. 16. The hologram patterns can be dynamically
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loaded so that they transfer arbitrary 2D beam patterns with
the minimum focused spot size of �250 nm and 2D gray-
scale intensity profiles to the sample. The 2D reconfigurable
dynamic CGH laser writing system can also control the
gray-level intensity values of the reconstructing beam. The
2D dynamic CGH laser writing system would have the
advantages of fast fabrication process, similar to a stepper in
semiconductor lithographic system, good tolerance error
performance because of its vibration-free characteristic and
arbitrary 2D design feasibility of CGHs.

5.3 Diffractive optic plasmonics devices
As described in the above, the PMMA–metal grating SPR

structures may have applications in some nanoscale pho-
tonics, biosensing or plasmonic integrated circuits.
Figure 17(a) shows the fabrication process of the PMMA-
based metal lamellar grating structure and experimental
result of the multifunctional SPR excitation structure under
the attenuated total reflection geometry. To form the

PMMA–metal lamella grating structure, we inscribed the
grating on the PMMA layer using a KrF excimer laser with
the wavelength of 248 nm. After developing the PMMA, we
deposited gold on the PMMA grating. From the experimen-
tal result shown in Fig. 17(b), we can see that the PMMA-
based lamella metal grating can generate multiple diffracted
beams and SPR excitation.

6. Concluding Remarks and Perspectives

The importance of diffractive optics will continue its rapid
increase in the future. Diffractive optics will play important
roles in realizing extraordinary optical functions, reducing
the size of optical systems, and packaging and integration.
Also, there will be more interests in dynamic optical
elements for real-time optical information processing and
display, which will require further investigation of improved
or new optical materials such as liquid-crystal SLMs,
photorefractive polymers, and holographic materials. Dif-
fractive optics can be widely applied to bio-information
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Fig. 17. (a) Fabrication process of the PMMA-based lamellar grating and (b) experimental result of the multifunctional lamellar

grating under the illumination wavelength of 532 nm with the SPR excitation angle of 43.9�.
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technology, sub-wavelength-scale near-field optical imaging
and plasmonics, nanofabrication, and high-capacity optical
data storage systems. Also, much interest is focused on
plasmonics, microfluidics, nanofabrication, and photonic
integrated circuit applications in combination with diffrac-
tive optics technologies.

In this paper, we presented a unified approach to obtaining
a thorough understanding and framework of the light field
synthesis problem. We discussed the light field synthesis
problems including 2D intensity distribution synthesis, 3D
intensity distribution synthesis, and 3D image synthesis in
terms of both the Fourier representation and the Hermite-
Gaussian mode representation. The theoretical aspects of the
field synthesis problem were focused on the mathematical
formulation of the field synthesis problem, the objective
functions and iterative optimization methods for minimizing
and regularizing the objective functions.

Also, some DOE applications in, for example, IT
(reconfigurable optical interconnection system and view-
ing-angle enhanced 3D display system), BT (dynamic
holographic optical tweezing system and DOE-based plas-
monic biochip structure), and NT (2D reconfigurable direct
laser writing system and grating-based SPR excitation) were
discussed. Diffractive optics has been widely studied for
subwavelength-scale photonic circuits, fluorescence near-
field microscopy, biosensing devices, and photonic display
applications. Although diffractive optics has been studied
quite intensively up to now, it still has many potential
applications ranging from nanophotonic optical devices and
circuits to near-field optical imaging and sensing, and is ripe
for further active research.
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