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Optimal nonmonotonic convergence of the iterative
Fourier-transform algorithm
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The increase of the monotonic convergence rate is an important issue for iterative Fourier-transform algo-
rithms. However, the steepest monotonic convergence of the iterative Fourier-transform algorithm does not
always promise an optimal solution in the design of a diffractive optical element. The optimal nonmonotonic
convergence of the iterative Fourier-transform algorithm is investigated by employing a microgenetic algorithm.
The proposed hybrid scheme of the iterative Fourier-transform algorithm and the microgenetic algorithm show
nonmonotonic convergence, and this results in a superior design. © 2005 Optical Society of America

OCIS codes: 050.1970, 090.1970, 140.3300.
The iterative Fourier-transform algorithm (IFTA) is
the most popular algorithm for the design of a diffrac-
tive optical element (DOE).1 The DOE design problem
does not allow analytic approaches, and an exact
solution may not exist.1 The degree of freedom is im-
portant in a nonlinear problem as it is in DOE design.
Commonly, amplitude and phase freedoms are em-
ployed in DOE design.2,3 In this Letter the relaxation
parameter1,4 is recognized as an effective degree of
freedom. With the same condition, IFTAs with differ-
ent relaxation parameters give considerably differ-
ent results. In this Letter we propose a method of
finding the optimal phase profile by clever use of the
relaxation parameter.

In general, monotonic convergence of the IFTA
is adopted as a matter of course. However, the
steepest monotonic convergence of the IFTA4 does not
always promise the optimum solution for nonlinear
problems such as DOE design. Through a monotonic
convergence, the IFTA may reach a local optimum near
the starting point. As is well known, the relaxation
parameter is a key factor in controlling the conver-
gence rate of the IFTA.1,4 Generally, the relaxation
parameter is considered constant or a single number
determined at each stage to induce the steepest de-
scent convergence.4 However, we take a new angle on
the relaxation parameter. In this Letter the set of re-
laxation parameters �lnjn � 1, 2, · · · , N�, the so-called
relaxation parameter vector with dimensionality N
equal to the previously given number of iterations
of the IFTA, will be optimized by the microgenetic
algorithm �mGA�.5 It is expected that the IFTA with
an optimized relaxation parameter vector will show
nonmonotonic convergence.

Figure 1 shows the f low chart of the proposed hybrid
scheme. As shown in Fig. 1, the IFTA loop (denoted in
the f igure by IFTA) is embedded in the mGA as a sub-
routine to generate the fitness value. A chromosomal
individual of the mGA is relaxation parameter vector
�lnjn � 1, 2, · · · , N� (denoted by x). In our mGA,
f loat point coding is adopted.6 The mGA is a small-
population-size genetic algorithm (five individuals are
usually maintained). The main strategy of the mGA is
to restart consecutively each time local convergence is
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achieved through an internal crossover loop (indicated
in the left-hand portion of Fig. 1), i.e., j fmin 2 favrj , d,
by saving the elite individual and newly creating the
whole population by adaptive mutation (indicated in
the right-hand portion of Fig. 1). To evaluate the
fitness value of each relaxation parameter vector the
IFTA subroutine starts from scratch and is iterated
just N times with each relaxation parameter vector
applied. As shown in Fig. 1, the internal genetic
operation consists of crossover, mutation, and elitist
approaches for selection. For the crossover a simple
linear combination of two individuals is used in which
the linear combination coefficient and the crossover
probability are tuned to 0.4 and 0.5, respectively (see
Chap. 6 of Ref. 6). For the mutation an adaptive mu-
tation operator for f loat point coding is implemented
in which the mutation probability and the system
parameter determining the degree of nonuniformity
are tuned to 0.05 and 5, respectively (see Chaps. 5
and 6 of Ref. 6). The mGA was previously used in
the design of DOEs reported in Ref. 5, in which the
phase profile of the DOE was directly optimized by the
mGA. In our approach, however, the phase profile

Fig. 1. Flow chart of the proposed hybrid scheme of the
IFTA and the mGA.
© 2005 Optical Society of America
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of the DOE is obtained through an embedded IFTA
subroutine. It should be understood that the IFTA
itself is optimized by the mGA.

In this Letter a new version of IFTA recently devel-
oped by Kim et al.2 is presented that takes the form
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Fn11 � FrDDOEFr21�Fn� , (1b)

where F0, Fn, cn, ln, and aD denote the target image
amplitude, the diffraction field at the nth iteration
stage, its phase profile, the relaxation parameter at
the nth iteration stage, and the regularization parame-
ter, respectively. Fr, Fr21, DDOE, and S represent the
Fresnel transform, its inverse transform, the ampli-
tude operator in the DOE plane, and the signal area,
respectively. For general cases including gray images,
the definition of the uniformity is defined as
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Bias parameter e should be selected carefully. For the
definition of the uniformity [Eq. (2)] to correctly indi-
cate the uniformity of the solution, e must be selected
to make the inner terms positive �e .

p
I0 2 jF j� in the

whole signal region. In the simulation e is set to 0.4.
The fitness function of the mGA to be minimized is de-
signed as
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where the first term is the mean-square error and the
second term is the uniformity. Fitness function E�F �
consists of a combination of two terms through weight
parameter w. In the simulation w is set to 4. Note
that the evaluation of the uniformity is done only in
the signal area.

For the simulation the target intensity distribution
is selected as shown in Fig. 2. We restrict the phase
profile of the DOE to be symmetric to ref lect the sym-
metry of the target image. The regularization pa-
rameter aD in Eq. (1) is determined as 0.2.2,3 Length
N of the relaxation parameter vector is selected to
be 100. The range of all the relaxation parameters
is set to �2200, 200�. All the relaxation parameters
are set to 1 for the conventional simple IFTA scheme
to be compared with the proposed scheme. We pur-
posely include the default relaxation parameter vector
�lnjln � 1, n � 1, 2, · · · , N� in the initial population of
the mGA. This initial setting and the elitist selection
rule of the mGA guarantee a superiority of the pro-
posed scheme.

Comparisons of the results of the proposed hybrid
scheme and the simple IFTA are shown in Figs. 3
and 4. Since the simple IFTA reaches the stagnation
point completely, after 1500 iterations, in the case
of the simple IFTA, the result at the 1500th itera-
tion stage is selected. Figures 3(a) and 3(b) show
the intensity distributions generated by the DOEs
obtained by the proposed hybrid scheme (at the 100th
iteration stage) and the simple IFTA (at the 1500th
iteration stage), respectively. Comparing the results,
we find that the proposed scheme (which results in
a diffraction eff iciency of 85.7% and a uniformity of
0.113) is superior to the simple IFTA (which results
in a diffraction efficiency of 82.4% and a uniformity
of 0.401) in both diffraction efficiency and uniformity.
Figures 4(a) and 4(b) show the convergence curves in
uniformity and diffraction eff iciency of the IFTA in the
proposed scheme and the simple IFTA, respectively.
Since the simple IFTA reaches the stagnation point
completely by 1500 iterations, to clearly compare the
performance of the proposed scheme and the simple
IFTA we purposely extend the total iteration number
of the IFTA in the proposed scheme to 1500 times
with all the relaxation parameters equal to 1 after the
previous 100 iterations with the optimized relaxation
parameter vector. As can be seen from Fig. 4 both
uniformity and diffraction eff iciency improve greatly
with the proposed scheme (as indicated by the solid

Fig. 2. Target image (intensity distribution) of an ex-
ample of a DOE design.
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Fig. 3. (a) Intensity distribution of the diffraction image
generated by the DOE designed by (a) the proposed hybrid
scheme and (b) the simple IFTA.

curves) through nonmonotonic convergence. In ad-
dition, the mGA tries to make the previously given
100th stage the optimum point. Thus the best-quality
solution is obtained at the 100th iteration stage (i.e.,
the optimum point) as shown in the enlargements at
the left. With only tens of iterations of the mGA, the
proposed scheme can produce a solution superior to
that of a simple IFTA since the mGA with the elitist se-
lection rule converges quickly in a few early iterations.
The small size of a chromosomal individual lessens
the computation load of the internal genetic algorithm
operators. Then the proposed hybrid scheme has
advantages of lower computation cost than the con-
ventional usage of a genetic algorithm or simulated
annealing and superiority of the resulting solution
compared with the simple IFTA. Practically, we can
drastically reduce the computation time by using the
parallel implementation of the mGA.7

In conclusion, we have shown that the optimal non-
monotonic convergence of the proposed hybrid scheme
Fig. 4. Comparison of the convergence feature of (a) uni-
formity and (b) diffraction eff iciency between the simple
IFTA (dotted curves) and the proposed hybrid scheme (solid
curves).

guarantees a superior solution to the monotonic con-
vergence of the conventional IFTA.
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