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Abstract: We investigate Huygens’ optical vector wave field synthesis scheme for electric 
dipole metasurfaces with the capability of modulating in-plane polarization and complex 
amplitude and discuss the practical issues involved in realizing multi-modulation 
metasurfaces. The proposed Huygens’ vector wave field synthesis scheme identifies the 
vector Airy disk as a synthetic unit element and creates a designed vector optical field by 
integrating polarization-controlled and complex-modulated Airy disks. The metasurface 
structure for the proposed vector field synthesis is analyzed in terms of the signal-to-noise 
ratio of the synthesized field distribution. The design of practical metasurface structures with 
true vector modulation capability is possible through the analysis of the light field modulation 
characteristics of various complex modulated geometric phase metasurfaces. It is shown that 
the regularization of meta-atoms is a key factor that needs to be considered in field synthesis, 
given that it is essential for a wide range of optical field synthetic applications, including 
holographic displays, microscopy, and optical lithography. 
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1. Introduction 
Recent advances in metasurface research have led to the possibility of optical wave 
modulation with the eventual goal of near full controllability of the wavefront. Metasurface 
technology now offers the hope that the simultaneous and independent modulation of the 
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phase, amplitude, and polarization of optical waves can be achieved on a single metasurface 
[1–7]. Metasurfaces are conventionally designed and fabricated in the form of thin metallic 
and dielectric composite patterns for practical applications [8–11], but various metasurface 
structures based on novel materials such as graphene and topological insulators have been 
proposed to expand the range of possible applications [12, 13]. 

Metasurface holograms are generated by metasurface-based diffractive optical elements 
(DOEs), each of which is characterized by a high numerical aperture (NA), high spatial 
frequency components, and an extremely thin structure. According to Huygens’ principle, a 
DOE can be considered an array of elementary point light sources with specific phase and 
amplitude modulation values. A DOE sets optical boundary conditions that can produce a 
designed optical field distribution in the half-infinite free space from the DOE. A vector field 
metasurface hologram based on Huygens’ principle can then be defined by a DOE that 
includes polarization, amplitude, and phase in the degree of controllability, and takes vector 
dipoles with a modulated amplitude and phase as an elementary point light source, i.e. meta-
atoms. According to the Mie scattering theory and Babinet’s principle, ultra-small dielectric 
rods and metallic rods can be regarded as electric dipole sources, and a subwavelength-sized 
slit on metallic film can serve as a magnetic dipole source under the illumination of an optical 
plane wave [14, 15]. The Huygens-Fresnel principle and the vector diffraction theory of light 
state that the boundary condition in the scattering plane can be replaced by the distribution of 
continuous surface magnetic and electric dipole moments, and the diffraction field is 
constructed from the radiation field of the dipole sources [14–24]. 

In this paper, we investigate Huygens’ optical vector field synthesis using in-plane 
polarized electric dipole sources and related signal-to-noise ratio issues. In particular, based 
on the premise of three-dimensionally radiating regularized point-like electric-dipole meta-
atoms, vector field synthesis and corresponding metasurface design problem are discussed. In 
Huygens’ field synthesis scheme, the non-paraxiality of the elementary meta-atoms, which 
causes a metasurface to generate a highly non-paraxial vector wavefront of wide spatial 
bandwidth over the paraxial regime, needs to be accounted for. Recent work on plasmonic 
field synthesis [25–28] has demonstrated that the irregular scattering patterns of meta-atoms 
can cause a considerable disparity between the generated plasmonic field and the targeted 
field that has a wide spatial bandwidth [25, 26, 29] and a metal-clad waveguide array has 
been proposed to enable the precise regularization of the irregular scattering patterns of meta-
atoms [29]. 

This paper is organized as follows. In Section 2, the flat-surface arrangement of in-plane 
electric dipole sources to generate an elementary linear-polarized Airy disk is described and a 
method for generating a target field by superposing elementary Airy disks is proposed. 
Numerical simulations demonstrate that the synthesis of an arbitrary vector field can be 
successfully achieved using the proposed method, and the residual field that includes cross-
polarized field components is suppressed with a precisely constructed in-plane electric dipole 
distribution. In Section 3, numerical results for the generation of circularly polarized 
holograms are presented to illustrate that the regularization of the meta-atoms improves the 
signal-to-noise ratio for optical field synthesis. Finally, concluding remarks are provided in 
Section 4. 

2. Vector field synthesis based on a linearly polarized Airy disk unit using an
in-plane electric dipole metasurface
As depicted in Fig. 1(a), an electric dipole metasurface (EDM) can be formed from the 
arrangement of subwavelength-size dielectric rods on a flat substrate. Assuming that the 
dielectric meta-atoms are not so close to each other that their mutual interaction is negligible 
[1–11], we can consider the total scattering field for an EDM to be the linear superposition of 
the scattering fields of the individual meta-atoms in free space. Here, we argue that an EDM 
that has meta-atoms with arbitrary in-plane electric dipole moments can generate an arbitrary 
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vector field at a specified output plane. The design problem, schematically illustrated in Fig. 
1(b), centers around determining the in-plane vector field distribution on the metasurface 
plane to generate a precise linear-polarized Airy disk pattern on the specific output plane, 

0z z= . 

An x-polarized Airy disk is defined as the in-plane electric field distribution in which the 

angular spectrum, tan


 , is designed by 

 
0

tan 0 NA ˆˆ ˆ( , ) { ( ) }( , , ) ,y xy k kxk z E z xk z
ρ

ρ θ ≤ ⋅× ×= = 1
 
   (1) 

where {}xy ⋅  is the two-dimensional Fourier transform and 
0NAk kρ ≤ ⋅1  is an indicator function 

whose value is 1 when the tangential wavenumber 2 1/ 22( )x yk k kρ = +  is not greater than 

0NA ,k⋅ and 0 otherwise. NA is the numerical aperture of the Airy disk as defined by 

NA = sinψ , and the radius of the EDM is set accordingly to 0 tanR z ψ= . It should be noted 

that Eq. (1) completely determines z-component of the electric field. z-component of the 
electric field of x-polarized Airy disk causes anisotropic intensity distribution at 0z z= . There 

has been much research on anisotropic focal spots and beams with high-NA [30–33]. 
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Fig. 1. (a) A schematic of an electric dipole metasurface (EDM) with subwavelength-sized 
dielectric rods on a flat substrate. (b) Illustration of the derivation of the electric dipole 
moment density of the EDM generating an x-polarized Airy disk pattern. The dipole moment 

densities, pρ and pφ , in the infinitesimal area rdS ′ correspond to the angular spectral 

components of the x-polarized Airy disk ρ and φ on the output plane, respectively. 

In order to generate the angular spectrum components of Eq. (1) on the output plane, each 
electric dipole moment should be placed at the specific corresponding position on the 
metasurface plane, as shown in Fig. 1(b). Because the field distribution of the Airy disk is 
localized around 0(0,0, )z  and the corresponding electric dipole density varies slowly, the 

radiating pattern of the infinitesimal electric dipole moment, ˆˆp p pρ φρ φ= +
, on the EDM is 

the dominant contributor to the angular spectrum component, tan
ˆˆρ φρ φ+=


   , of which 

wavevector k


should be parallel to the direction vector from the dipole to the center of the 
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Airy disk, r r− ′ = 
0( cos , in , )s zρ φ ρ φ− − . The radiation pattern of dipole p at position r ′ in 

infinitesimal area rdS ′  is assumed to be in the form of Green’s dyadic: 

 
0 0| |
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 
(2) 

Figure 1(b) illustrates that the angular spectrum component with ( )k r r− ′
   , decomposes 

into TM and TE components, ρ and φ , respectively. For the x-polarized Airy disk, 

cosρ φ=  and sinφ φ= − . It should be noted that ρ is accompanied by the z-component of 

the Fourier component / zk kρ ρ−  , while φ is not. In turn, the generation of unit TM 

component needs 0 / 1/ coszk k θ=  times more power than that of the unit TE component, and 

the in-plane components of the electric field completely determine the perpendicular 
component of the electric field for the unit Airy disk field. Accordingly, the dipole field on 
the metasurface plane decomposes into TM and TE components, pρ  and ,pφ  respectively, as 

in Fig. 1(b). Starting with Eq. (2), the electric field distribution generated by the decomposed 
dipole components can be represented by 

 
0 | |
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For fixed propagating direction ( ),k r r− ′
   the TM component of the electric dipole 

moment, pρ , radiates only the TM component with the inclination factor |/ | cosr rz θ′ =− 
, 

while pφ  exclusively radiates the TE component. The infinitesimal area rdS ′  corresponds to 

the infinitesimal area in the transverse k-space kdS in the form of 

| / |r kdS dS′ = 4 2 2 2( / /( ) / ) | | | | os .cd d r rk dk d z r rρ ρρ ρ φ φ θ= − ′ − ′=   
 At the focal spot of the 

x-polarized Airy disk 0 0 ˆ,r r z z== 
 the electric dipole ˆˆp p pρ φρ φ= +

 at 

ˆ ˆ(cos sin )r x yρ φ φ′ = +
contributes to the Fourier components ( )kρ


  and ( )kφ


  as follows: 
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Specifically, the distribution of the electric dipoles for the generation of the x-polarized 
Airy disk described in Eq. (1) is given as: 
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xp  and yp  are derived by applying position-dependent rotation: 
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Finally, the constructed field genE


, via the distribution of in-plane electric dipoles in Eq. 

(7), can be calculated as follows: 
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We argue that 
0

gen 1 0ˆ NA )( /
z z

E x J k ρ ρ
=

⋅ ∝ ⋅


, that is, the x component of the generated 

field is the form of the Airy disk in Eq. (2). The decomposed dipole field p  was normalized 

to produce the x-polarized Airy disk on the focal plane 0 ,z z=  of the form, with precise 

approximation, 

 1 0
0

NA )
NA ,

2

(
x

J k
E k

ρ
πρ

⋅
= ⋅  (8) 

where 1( )J x  is a first-order Bessel function of the first kind. This geometric correspondence 

is assisted by two previously established premises: (i) the x-polarized Airy disk is localized 
within the diffraction limited area, and (ii) the derived distribution of the electric dipoles 
varies slowly. In turn, this geometric ray-like treatment of EMD design is sufficient to 
generate an x-polarized Airy disk field on the output plane. 

The distribution of electric dipoles of the EDM for the generation of an x-polarized Airy 
disk is presented in the left panel of Fig. 2. The electric dipoles are placed at the two-
dimensional isotropic grid with the grid size Λ . According to the Nyquist-sampling theorem, 
the grid size should satisfy / 2λΛ ≤ , where λ  is the wavelength of optical field. We set 

/ 2λΛ =  throughout this paper. An Airy disk with any polarization is realizable at an 
arbitrary position via the superposition of x- and y-polarized Airy disks. As depicted in Fig. 2, 
the amplitude distribution of the electric field is anisotropic due to the z component of the 
electric field, which is required to satisfy the transversality of electromagnetic waves. 

In Fig. 2, we present the amplitude distributions of the electric dipole moments for EDMs 
and their radiated field distributions in three dimensions. Given the focal length 0 um5z =  

and the numerical aperture NA sin 75 0.966,= ° =  the xE  is almost the same as the Airy disk 

1 0NA( ) .2 /J k ρ ρ⋅  Quantitatively, the quality of the constructed x-polarized Airy disk via the 

proposed EDM can be measured by the SNR: 

 2 2 2
1 0 1 0SNR | (NA ) / | (| (NA ) / | | | ) ,x yk dxdy E k E dxJ dyJα ρ ρ α ρ ρ−   = ⋅ ⋅ +   

 (9) 

where { }1/ 2
2 2 2

1 0(| | | | | N /) ( A )/ |x yE E dxdy J k dxdyα ρ ρ   = ⋅ +    normalizes the Airy 

disk with respect to the transverse field of the radiated field of the EDM on the focal plane. 
The SNR of the x-polarized Airy disk via the EDM is estimated to be 18.72. The necessity of 
the cross-polarized dipole component yp  can also be examined by comparing the SNR of the 

EDM described in Eq. (6) with that of the EDM that only has xp . As shown in the right 

column of Fig. 2, the SNR of the yp -nullified EDM is calculated to be 5.25, which is far less 

than that of the EDM with yp . As seen in Fig. 2, by nullifying yp , the amplitude distribution 

of xE  on the focal plane 0z z=  is distorted compared with that of the ideal Airy disk, and the 
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cross-polarized component of electric field yE  clearly exists. It means that the proposed 

EDM described in Eq. (6) precisely generates an Airy disk. The minimizing property of the 
focal volume is presented in Fig. 2. From a practical viewpoint, both the z-directional depth 
resolution of the Airy focus and the transversal x-y resolution are important. The z-directional 
spot size in both cases is similar, at 1.276 um and 1.281 um, respectively. The miminization 
of the focal spot in three dimensions is achieved in the form of the Airy disk generated via the 
proposed EDM. 
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Fig. 2. Comparison between EDM distributions generating the amplitude of normalized Airy 

disk 1 0 0NA ) / [NA ,2 ( ]J k kρ ρ⋅ ⋅  with NA sin(75 ) 0.966,= ° = focal 

length 0 5 um,z =  and wavenumber ( )0 / ,2 1 umk π=  and the reconstructed field 

distributions of an EDM for an x-polarized Airy disk (left column) and an EDM with a 

nullified yp (right column). Upper row: plots of the amplitude distributions of the EDM. 

Middle row: generated electric field distributions on the focal plane. Lower row: electric field 
distributions on the 0y =  plane showing the focusing characteristics in three dimensions. 

Based on the derived Airy disk EDM, we give an example of the generation of a Bessel-
Gauss beam with a high divergence angle by decomposing it into Airy unit elements [34–39]. 
In the reconstruction of the Bessel-Gauss beam via an EDM, whether the EDM generates an 
arbitrary wavefront of spatially varying polarization, amplitude, and phase is tested. 

A Bessel-Gauss beam on the focal plane is given as follows: 
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mE w J
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ρ θ θ ρ βρ

= ⋅


− ⋅
= ⋅ − ⋅

 (10) 

where m  is the topological charge of the Bessel-Gauss beam, 0w  and β  determine the 

number of rings and the size of the beam, respectively, and ( )mJ x  is a m-th order Bessel 

function of the first kind [39]. Figure 3(a) displays a Bessel-Gauss beam of topological charge 
2m = . In Fig. 3(b), the Bessel-Gauss beam is decomposed into periodically arranged linearly 

polarized Airy disks whose amplitudes, phases, and polarizations are obtained from the 
sampling process of the transverse electric field as shown in Fig. 3(a). 
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Fig. 3. Schematics for the (a) sampling and (b) reconstruction scheme for a Bessel-Gauss beam 

with topological charge 2m = . The transverse electric field on the 0z z=  plane is sampled 

at the sampling grid points, with a sampling period that satisfies the Nyquist rate of the 
wavefront of the beam. The transverse electric field for the Bessel-Gauss beam is always 
linear. The linearly polarized Airy disks, whose numerical aperture is defined by the sampling 
period Λ , are superposed to reconstruct the Bessel-Gauss beam. (c) Schematic of the 
wavefronts of the Bessel-Gauss beam. (d) Generation of the Bessel-Gauss beam via the EDM 

by sampling the transverse electric field on the focal plane 0 20 umz z= = . The amplitude 

distributions of RCPp and LCPp of the EDM (upper row) that generate the Bessel-Gauss beam 

with the parameters 0 22, 2 um,wm λ ===  and 0
11884 m .m0.3kβ −= =  Plots of 

the amplitude distributions of RCP LCP, , ,zE E E  and E


 of the Bessel-Gauss beam on the 

focal plane (lower row) and the distribution of the polarization of the transverse electric field 
on the focal plane, and amplitude distributions of the transverse electric field at 

5, 10, 15, 20, 25, 30z =  and 35 um (lower row). 

For a given NA, the sampling grid is set to satisfy the Nyquist sampling condition 

samp / (2 NA)λΛ ≤ ⋅ , and the highest spatial frequency maxk  of the considered beam should 
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meet the inequality relation max 0/ NAk k ≤ . The later condition ensures that there is no loss of 

information during the reconstruction process by taking account of sufficiently high-NA. 
The transverse electric field is sampled at the sampling grid points as seen in Fig. 3(a) so 

that the transverse electric field of the Bessel-Gauss beam on the focal plane is linearly 
polarized. Considering a Bessel-Gauss beam with 
parameters 0 02, 2 , 0 ,.3m kw λ β= = = and 1 um,λ =  numerical testing confirms that the 

corresponding EDM precisely generates the target Bessel-Gauss beam in Fig. 3(d). The focal 
plane is placed at 0 20 um,z z= =  and the corresponding EDM is at 0 um.z =  We set the 

numerical aperture NA sin 75 0.966= ° =  to reconstruct all of the angular spectra of the 
Bessel-Gauss beam. Figure 3(d) illustrates that the EDM generates a donut-shaped, wavefront 
with spatially varying polarization, as depicted in Figs. 3(a) and 3(c). The peak signal-to-
noise ratio (PSNR) of the reconstructed wavefront seems to be proportional to the SNR of 
elementary Airy disks, so to achieve a high PSNR in the reconstructed wavefront, the SNR of 
the elementary Airy disk needs to be high. In Fig. 4, we plot the electric field distributions of 
EDMs on the xy-plane. Figure 4 illustrates how the SNR changes when the focal length 

0z and the NA of the EDM changes. According to the numerical results, the SNR is improved 

by increasing 0z  and NA. For a fixed NA, a longer 0z  implies that the distribution of electric 

dipole moments on the EDM varies more slowly. Meanwhile, for a fixed 0 ,z an EDM with 

larger NA generates an x-polarized Airy disk with less distorted sidelobes, as depicted by the 
intensity distributions of the residual fields for the four selected EDMs on the corresponding 
focal plane in Fig. 4. 
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Fig. 4. 0 SNRz − semi-log plot (center) for various NAs and focal lengths for EDMs. Four 

intensity profiles (the four corners of the figure) of the residual fields, which represent the 

difference between xE generated by the EDM and the Airy disk on the focal plane. The 

sidelobes of the Airy disk are properly reconstructed when 0z  and NA  are large enough. 

The peak intensity of the residual field is also greatly suppressed. 

3. Electric dipole metasurface for complex vector field generation 
The sampling and reconstruction scheme introduced in the previous section is used to 
generate high quality holograms via the proposed EDM. Consider the generation of a 
circularly polarized hologram defined by the image in Fig. 5(a). Figure 5(b) shows that an 
EDM with focal length 0 um5z =  and fixed NA sin 75 0.966= ° =  produces a low-noise, 

right-handed circular polarization (RCP) hologram with the left-handed circular polarization 
(LCP) field component greatly suppressed. The peak signal-to-noise ratio (PSNR) is 76.81. 
To find the conditions necessary for the practical realization of ideal EDM meta-atoms, we 
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compared the quality of the reconstructed hologram from practical geometric phase 
metasurfaces with that of the reconstructed hologram obtained using the EDM in Fig. 5. 
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Fig. 5. (a) Schematic for hologram generation. EDM at 0z =  illuminated by an LCP plane 
wave along the + z-axis is derived by the superposition of sampled Airy disk units on the 

image plane 0z z= . (b) Plots of the target image, the electric dipole distribution of the EDM, 

and the corresponding field distributions on the image plane. The wavelength 1 um.λ =  The 

PSNR is 76.81. (The trademark of Seoul National University was used with permission from 
Seoul National University R&DB foundation. All rights reserved, used with permission) 

The electric dipole distribution for the EDM presented in Fig. 5(b) is used in the 
comparative test. In practice, many metasurfaces use a geometric phase scheme to generate 
circular-polarized spatially modulated wavefronts. Under the illumination of a circular 
polarized ( )σ+  plane wave normal to the geometric metasurface, the phase of the cross-

polarized field is modulated by the geometric phase structure [1–5]. As a method to extend 
the phase-only modulation capability of geometric phase metasurfaces to the complex 
modulation of both amplitudes and phases, supercell metasurfaces have received a great deal 
of research attention [1, 3, 40]. Supercell structures that include a few meta-atoms are 
considered to be a single macro meta-molecule featuring complex amplitude modulation 
characteristics. Geometric phase metasurfaces (GPMs) can be categorized as EDMs. 
Dielectric rods with rotating angle θ  act as efficient linearly polarized meta-atoms with 2θ  
phase modulation. We can design metasurfaces capable of complex amplitude modulation by 
combining two GPMs into a supercell metasurface as depicted in the left panel of Fig. 6, 
producing a double geometric-phase metasurface (DGPM). Given the normalized amplitude 
and phase modulation of exp( ),A iφ  the rotation angles 1θ and 2θ of the two nano-rod 

antennas are determined by the design equation 

 
1

1 2

1 2

c
,

os Aθ θ η
θ θ φ

− =
+ =





−
 (11) 

where η  is a proportionality constant that controls maximum amplitude. If η  is small, the 

two elementary antennas act as two independent phase-modulated dipoles generating a linear 
superposition of respective dipole fields. 
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Fig. 6. Schematics of the meta-molecules for a DGPM, QGPM, and XAM (left-most panel). 

Amplitude distribution of the RCPE for the unit RCP Airy disks via the DGPM, QGPM, and

XAM on the focal plane 0 um5z z= =  and on the um0y =  plane (left panel). The

three metasurfaces have the NA sin 75 0.966= ° =  and the wavelength 1 um.λ =  The 

holograms of the same target image in Fig. 5 are generated via the conventional metasurfaces 

DGPM, QGPM and XAM, respectively, at the focal plane 0 um5z = (right-most panel). The

corresponding structural parameters 1θ  and 2θ  are presented in the third panel. 

In order to enhance the SNR, we can suggest the use of quadruple geometric-phase 
metasurfaces (QGPMs), which combine four GPMs into one, and an X-shaped antenna 
metasurfaces (XAMs), which unites two elemental tilted rod antennas [40], as illustrated in 
the left panel of Fig. 6. DGPMs, QGPMs, and XAMs generate an RCP wavefront with a DC 
plane wave of opposite polarization under the illumination of an LCP plane wave on the 
metasurfaces. As depicted in the left panel of Fig. 6, subΛ  is the distance between nearby 

nano-rod antennas of meta-molecules of DGPMs and QGPMs. To minimize mutual 
interactions of nano-rod antennas, we set sub / 2Λ = Λ . In the middle panels of Fig. 6, the 

local field distribution of the RCP Airy disk for the four metasurfaces around the focal spot is 
presented. In the far-right panel, the corresponding holographic image measured on the output 
plane is presented. Based on this estimation, the RCPSNR  is defined as 

2 2
RCP 1 0 RCP 1 0SNR | (NA ) / | (| (NA ) ,)/ |k dxdy E k xdJ J d yα ρ ρ α ρ ρ   = ⋅ ⋅ −    (12)

where RCP 02 |Max{| } / (NA )E kα = ⋅ ⋅  to equalize the peak values of the calculated RCP field

and the RCP Airy disk. The RCPSNR  for the DGPM, QGPM, and XAM was 1.024, 1.932, 

and 4.347, respectively. The resultant PSNR was 7.894, 21.18, and 27.38, respectively, 
following the same order as the RCPSNR  of the corresponding unit Airy disks. Thus, the 

engineering of the radiation patterns of meta-molecules is important in ensuring the quality of 
the hologram image. XAMs have an advantage in that they regularize the radiation pattern to 
be the same as that of the RCP EDM, in turn nullifying the other multipole radiation terms. It 
should be noted that the QGPM has a moderate RCPSNR  because the magnetic dipole 

radiation is suppressed by the C2 symmetry of the meta-atoms in a molecule of the QGPM. 
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The DGPM failed to form a single focal spot, producing instead two three-dimensionally 
separated focal spots away from the intended position ( , , ) (0, 0, um)5x y z = , as seen in the 

middle panel of Fig. 6. In the terms of the SNR, the performance of the XAM is close to that 
of the EDM. It is worth mentioning that nano-rod antennas in DGPMs and QGPMs have 
identical shape and same frequency dispersion. These two types of metasurfaces might be 
used to implement dispersion engineering for broadband signal processing [41–43]. 

For practical applications, we discuss efficiency of the considered metasurfaces. 
Diffraction efficiency of meta-molecules of transmissive GPMs reaches to 1/2, assuming that 
low-reflection design is applied to the meta-molecules. Here, we calculate efficiency of the 
metasurfaces for generating a wavefront as the ratio of optical power of the generated signal 
to the incident power. This definition accounts for the quality of the generated wavefront as 
well as diffraction efficiency of meta-molecules. For example, in Fig. 6, the efficiencies of the 
DGPM, QGPM, and XAM are estimated to be 0.444, 0.477, and 0.236, respectively. The 
proportional constant η  of the XAM is chosen as 0.7 which guarantees moderate interaction 

between arms of each meta-molecule of the XAM. GPMs for generating such large 
bandwidth holograms suffer from low efficiency, due to their low PSNR. 

The comparative study of the DGPM, the QGPM, and the XAM indicates that the 
radiation patterns of the meta-molecules are crucial to the generation of extremely high SNRs 
for high-NA focal spots. These conventional metasurfaces are only capable of generating 
wavefronts with a fixed circular polarization. The spatial multiplexing of two DGPMs, 
QGPMs, or XAMs with polarization filtering might generate true EDM meta-atoms for 
complete vector field generation. The irregular radiation patterns of meta-molecules ascribed 
to macro-pixel integration can lead to metasurfaces with low SNRs, but the regularization of 
meta-atoms requires further research. 

4. Conclusion
In this study, we have investigated Huygens’ optical vector wave field synthesis scheme and 
considered an EDM with full freedom in terms of amplitude, phase, and polarization as the 
ultimate form of optical field modulation metasurface. Meta-atom structures with a full 
degree of freedom have not previously been proposed but here we describe an EDM 
distribution design and the practical design issues facing vector field synthesis in the deep-
subwavelength multiplexing of XAM or QGPM structures that afford polarization control and 
complex modulation. The described scheme paves the way for future practical metasurface 
applications that require the capabilities of precise generation of optical field with large 
bandwidth. 
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