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Abstract: The interocular affine similarity of three-dimensional scenes is investigated and a
novel accelerated reconfiguration algorithm for intermediate-view polygon computer-
generated holograms based on interocular affine similarity is proposed. We demonstrate by
using the numerical simulations of full-color polygon computer-generation holograms that the
proposed intermediate view reconfiguration algorithm is particularly useful for the
computation of wide-viewing angle polygon computer-generated holograms.
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1. Introduction

Three-dimensional (3D) imaging and display technologies have been in active development
over the past two decades. The basic principle of 3D display technologies [1] is the utilization
of binocular 3D cues for the human visual perception system, with interocular disparity being
the most effective of these cues. In a classical sense, the interocular disparity supposes that
the parallax views of a 3D scene are considered completely different.

In general, holographic 3D displays are considered the ultimate form of 3D display
because they are able to deliver the most natural 3D images with accommodation-vergence
match [2]. This accommodation-vergence match is ascribed to the interocular disparity
included in the CGH pattern. The computer-generated holograms (CGHs) for holographic 3D
displays contain all of the information on the continuous parallax views of a three-
dimensional (3D) scene, which is recorded in a CGH using single two-dimensional
continuous complex fringe patterns and produces motion parallax effect as well as
accommodation-vergence match.
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Representation theory and rapid calculation algorithms have been two of the main CGH
research issues. Various CGH representation theories have been developed, such as point
clouds [3-8], ray-sampling [9—11], depth-map [12—14], and polygon [15-21] based CGH
models. The polygon CGH is well known by computational efficiency, rigorousness of
modeling and flexibility. The polygon CGH can be efficiently calculated by using fast Fourier
transform (FFT) method, but the analytic theory of polygon CGHs has steadily continued
[22,23]. The development of the fast algorithms has focused on parallel implementation on
parallel computing hardware and related algorithm development [23—-28]. The reduction in the
complexity of CGH algorithms through mathematical analysis [29-31] from an information
theoretic perspective is fundamentally important, but it is relatively rare in comparison with
research on parallel computing.

From an information theory perspective of CGH, we need to introduce the concept
contrast to the interocular disparity, interocular similarity, where the different directional
views of a 3D scene share a strong similarity. Interocular similarity is worth analyzing in
depth since it gives new insight on the information of CGH and its utilization enables the
acceleration of CGH. If we can exploit the interocular similarity of a 3D scene with finite
viewing angle to synthesize intermediate view CGHs and its total calculation amount is
reduced, it would be expected that we have a mathematical complexity reduction for the
acceleration of CGH calculation. In this context, interocular similarity leads to the expectation
that continuous parallax views share informational similarity and the actual informational
capacity of a CGH can be smaller than the informational capacity of the conventional space-
bandwidth product [32, 33]. With this in mind, we can extend this to understand that the
space-bandwidth product is the upper-bound of the amount of information that is containable
in a finite-viewing-angle 3D image, because the conventional space-bandwidth product
assumes that there is no relationship between adjacent views.

This fundamental information theoretic perspective on CGH is the motivation of this
paper with the primary questions being how we can efficiently use the interocular similarity
of 3D objects to develop an accelerated algorithm for CGH synthesis and how interocular
similarity can be represented efficiently. This paper presents a theoretical analysis of the
interocular similarity among adjacent holographic images with angular separation. The
interocular similarity between adjacent views can be represented by the affine transform of
corresponding points and this property is extensively investigated and extended to efficiently
synthesize wide-view polygon CGHs. An application of the proposed method to 360-degree
multi-view CGH content generation [34—38] is presented.

This paper is structured as follows. In Section 2, a geometric model of 3D scene
perception is described. In Section 3, the affine transform analysis of the interocular similarity
of a 3D scene is presented. In Section 4, an accelerated CGH algorithm based on the
interocular similarity is proposed based on the wave optic interpretation with affine
transformation for CGH calculation. Numerical experiments and the subsequent evaluation of
the proposed accelerated CGH algorithm are presented with an example of 360-degree multi-
view CGH content generation. Finally, concluding remarks are provided in Section 5.

2. Geometric model of three-dimensional scene perception

In this section, we present a geometric model of 3D scene perception and analyze the
interocular similarity of a 3D scene. The focus of the analysis is the non-linear relationship
between two different parallax views in retina spaces derived from the 3D scene perception
model. The non-linear relationship can be linearly approximated by an affine transformation
even for quite large angular separation between two views, a process referred to the
interocular affine similarity transform. The tolerance range for the interocular affine similarity
is numerically analyzed using the interocular affine similarity transform. The interocular
affine similarity established in this section is then applied to the accelerated CGH synthesis
algorithm in Section 3.
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A basic property of the visual perception system is that the monocular imaging system of
the eye allows the viewer to see 3D objects by automatically adjusting its accommodation to a
convergence point. In Fig. 1, two monocular imaging systems that share a convergence point
are illustrated, with the global reference coordinate system and the local coordinate systems
for the left and right eyes denoted as xyz, u,v,w,, and u,v,w, , respectively. When both eyes
are focused on the convergence point, then the foci of two eyes are automatically adjusted to
the convergence point. The perceived image in the eye varies with changes in eye position.
Here, we develop a geometric model of this monocular imaging based on an arbitrary location
and rotation.

(@)

vy

1N%
24

(b)

Fig. 1. Convergence and accommodation in the binocular visual perception system (a) global
and local coordinates and (b) adaptive global coordinate system.

Let us set the convergence pointas P, =(x,,,,z,) and the projection center of the eye as
N =(x,,¥,,2,) in the global coordinate system, where the projection center N is the center

of the eye lens. In normal conditions, the unit vector u is on the viewing plane, which is the
plane specified by the u and w vectors, and the unit vector v is normal to the viewing plane.
The optic axis vector of the eye in the global coordinate system is given by
w = (cos ¢sin 8,sin ¢sin @, cos @) . The coordinates of the projection center N is then solved

by

X, X, cos @sin 6
N|y, |=|». |+|singsin@ |¢, (1)
zZ, z, cosd

where the necessary parameters, ¢, €, and 6 are given by

= =x) + (-2 +(z-2.)" )
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(cos@,sinf) = ((z0 -z, )/t,\/(x0 —x.) (v -2.) /t), (3)

(cosg,sing) =((x, —x,)/(tsin6),(y, —y.)/(¢sinH)). 4)
The v-axis unit vector of the retina coordinate system v is obtained by
V= (—cos¢cosesinr—sin¢cos 7,—sin ¢ cos @sin 7+ cos@Pcos 7,sin Gsinr), 5

where 7 is the tilt angle of the eye that is adjusted to make u parallel to the xy plane.

Because the eye’s focus remains on the convergence point, when the convergence point
moves, the focal length of the eye varies in accordance with

f=dt/(d, +1), (6)

where d, is the distance between the eye lens and the retina plane, and ¢ is the distance

between the convergence point and the eye plane form Eq. (2). In addition, in order to
consistently describe the wave optic imaging and CGH synthesis theory using the same
framework, we need to define an adaptive global coordinate system for the eye, as seen in
Fig. 1(b). In the adaptive global coordinate system of the eye x’y’z”, the 3D scene is rotated

relatively to align the optic axis of the eye with the global coordinate z-axis. The optic axis z’
is matched to the optic axis w and the plane x”y” is parallel to the plane uv. As a result, the
adaptive global coordinate systems are obtained, respectively, as

4 ’

X o My N X=Xy Xo
’ ’

YV I=| T B B || V=Yoo [T Yo |5 (7
’ ’

z B Iy 3 )\Z27% Zy

where the rotational matrix and the projection center, N, in the virtual global coordinate
system, are set as

n, K, Iy cos7 sint 0)(cos@ 0 —sinf)( cos¢ sing 0
By Fy Iy |=|-sint cost O 0 1 0 —sing cos¢g 0|, (8)
B By Iy 0 0 1){sin@ 0 cosé 0 0 1

(4 720)=(0.0.4fx5 7+ ) ©)

The imaging of a 3D object in the retina space of the observer’s eye is interpreted by the
adaptive coordinate system, which is schematically illustrated in Fig. 2.

For simplicity, from this point forward, the notation xyz will be used instead of x’yz" to
represent the adaptive global coordinate system. Consider the imaging of a 3D object through
a single eye illustrated in Fig. 2, where the triangular facet in object space is imaged in the
retina space of the viewer’s eye. The center of mass of the triangular facet is denoted by

(x.,v.,z,) and the eye focus is set to the center of mass. A triangular facet in the object

space is delivered to the retinal space through the geometric imaging transformation [16]. The
focal length of the eye lens [ is set by

I/ f=1(d,~z,)+1/d,. (10)
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Set D, =d, —z, and then D, =l/ (1/ f=1/D,). The corresponding imaging point in retina

space (u,v,w) is obtained by

(u,v,w)=(-D,x/D,,—D,y/D,,D, —d,). (11)

f “
\ Py, v,w,)
“‘n, \\,‘EJ("‘s’VvWJ)
X, Ye2,) L z W
B(x;,33,23) :
/ 4@, w)

By}

&

cos N

Y B(%,,32,2,)
4 %
(@ _
X—X, u ut
x', Ju'
-t
‘¢ v Z
S| P o
zZ—z, — 2 w—=Ww,
= -
!
w
Y=Y
v @ Object space V=, @ Retina space
)

(b)
Fig. 2. Image transport of an eye system (a) collinear transform and (b) rotational transform in

object space and retina space.

The geometric imaging transformation transports the triangular facet with three apex
points, P (x,¥.z) ., B(x.5,.2,) , and B (x,,»,,2z,) , to the triangular facet with

P, (u,v,w), P,(u,,v,,w,), and P, (u;,v;,w;) in retina space. It is assumed here that all
the points on the triangular facet in object space B PP, are mapped onto the flat triangular
facet in retina space B P,P,. Here, a geometric imaging transform between the textures on
BPP, and P,P,P, is developed. The triangles AP, and P,P,P, specify two planes in
object and retina space, respectively, as

cos@sin@(x—x, )+singsin@(y—y,)+cosf(z—z, ) =0, (12)
cos@, sinf, (u—u,)+sing, sing, (v—v,)+cosf (w—w,) =0, (13)

where € and ¢ are the longitudinal and azimuthal angles of the object space local coordinate
system and 6 and ¢ are the longitudinal and azimuthal angle of the retina space local
coordinate system. (x,,y,,z,) and (u_,v,,w,) are the centers of mass of the triangles F,P,P,
and P,P,P,. The two corresponding points (x,y,z) and (u,v,w) are connected by the

collinear condition with the projection center (0,0,d, ), which is expressed by
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x 0—u u
y|= 0—-v t+ v , (14)
z) \d —(d +d,+w) d +d,+w

where the parameter ¢ is obtained by substituting Eq. (14) into Eq. (12):

t_(xu—u)cos¢sin6+(yc—v)sin¢sin6+(zc—w—d]—dz)cosﬁ (15)
N —x,cosqﬁsin@—yrsin¢sin9+[dl—(d]+d2+zr)]cost9 '

In a similar manner, (u,v,w) is solved as

u X 0 X 0

v=1y+0=sy+0, (16)

1-t
( )z—d1 ~d,) \z-d,) |4,

=

where the parameter s is obtained by substituting Eq. (16) into Eq. (13):

u, cos@, sin6, +v, sing, sin6, +(d, +w, )cosb,
S =

a7

cos@, sin@ x+sing, sin@ y+(z—d,)cosb,

Each triangular facet has its own local coordinate system with the origin set to the center of
mass denoted by x)’z" and uv'w’ in Fig. 2(b) [15]. The local coordinates of a point in object
space is solved for the global coordinates

x' cosfcos¢ cosfsing —sinf)( x—x,

y'|=| -—sing cos ¢ 0 y=y. | (18)

ZV

sinfcos¢ sinfsing cosd )\ z—z,

The local coordinate of the corresponding point in the retina space is given by

u' cos@ cos@ cosd sing —siné [ u—u,

v/ |=| —sing, cos g, 0 v=v, |. (19)
, . . .

w sin@ cos¢ sinf sing  cosd Jw-w,

Here, (x,y,z) and (u,v,w) have the corresponding local coordinates (x’,)") and (u’,v),
respectively. (x,,,,z.) and (u,,v,,w.) are the centers of mass of the triangles AP, P, and
P,P,P,, respectively. The local coordinates of the object space is functionally related to
those of retina space in the form of x"=x"(u’,v") and »'=)"(u,V") or, inversely,

u'=u’(x,y") and v/ =V'(x,)"). (x,),0) is solved for (u’,v",0) as

x' cos@cos¢ cosfsing —sinf 0—u U—x,
y'|=| -—sing cos @ 0 0—-v t+ V=Y, ,
z' sinfcos@ sinfsing cosf )|\ d, —(d, +d,+w) d+d,+w-z,

(20)
where ¢ is given by Eq. (15) and (u,v,w) is represented by
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u cos@, cos, —sinf. cos@,sin6, \(u’ u,

v |=| sing cos€, cosg sing sing ||V |+] v, |. (21)
. 4

w —siné, 0 cosd, w )\,

Inversely, (u,v/,0) is solved for (x’,)",0) so that

’

u cosf cosg cos@ sing —sinb \[ u—u,

Vi |=| —sing, cos g, 0 v=v, |, (22)
’ . . .

w sin@, cosg, sin@, sing,  cosf J\w-w,

where s is Eq. (17) and (u,v,w) is represented by

u cosB cos@, cos@ sing —sind, x X, 1 0
v |=s —sing, cos g, 0 V' + v r+ 0 .(23)
w sinf cos¢ sinf sing  cos6. z' z, J —d, —sd,

From Egs. (20), (21), (22), and (23), we have the set of mapping functions relating the local
coordinates of object space to those of retina space as x"=x"(u’,v") and y"=)"(u",V’) or,

inversely, u"=u"(x",y") and v'=v'(x",)). As a result, non-linear mapping is established
between the local coordinate system of object space (x’,y’,0) and retina space (u’,7,0).

Figure 3(a) depicts the simulation setup used to verify the visual perception of a 3D object
with a single rectangle background plane and a triangular facet positioned slightly apart from
the rectangle plane. At the same time, the left and right eyes observe this scene.

Ri .
e;fim Left eye Right eye
Retina
image
Grid
mapping
(@ (b)

Fig. 3. (a) Schematic design of the computational simulation to verify the non-linear
conversion relationship between two eyes, and (b) the retina image and non-linear grid map for
the left and right eyes.

By using nonlinear mapping »’ =u"(x’,y) and v'=v'(x",)”), we can draw a non-linear

grid on the retina plane that is mapped from the uniform grid of the object surface. Figure 3
presents the mappings of a uniform grid drawn on the rectangular facet into the retina planes
of the two separated eyes and the observed images with different parallax for the two distant
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positions of the eyes. This perception process can be visualized by the mapping of uniform
grid in object local space to non-uniform grid in retina local space, in which the uniform grid
image is stretched asymmetrically on the retina imaging plane and its shape changes for
different positions. The simulation in Fig. 3 illustrates two processes: (1) how the triangle
looks on the image plane of each camera and (2) how a uniform grid on local coordinates of
the triangular facet floating in global object space is mapped to the local coordinates of the
imaged triangular facets for both eyes. The first row of the chart in Fig. 3(b) shows that the
perspectives of both eyes differ for the same scene. In the second row of the chart, we can see
that the uniform grid on the local coordinates of object space is non-linearly mapped to that of
each retina space. The two non-linear grids also exhibit different patterns because the location
and view direction of both eyes are inconsistent.

It is important to consider the coordinate transform of a point in the local coordinate
system of a facet to the local coordinate system of the adaptive global coordinate system. This
relationship is described by

’

x x
¥, |=GtoL,-R-LtoG| y' |. (24)
z,

ZI

The full derivation of Eq. (24) with the definitions of GtoL,, R, and LtoG, are described in
the Appendix. From Eq. (24), the redefined grid (x,y’,z" ) on the adaptive local coordinate
is solved for the uniform grid (x,3’,z") of the original local coordinates.

3. Interocular affine similarity of a three-dimensional scene

If a triangular facet has a plain texture, the observer will notice variation in its shape and
shading in response to spatial changes in the observer’s location and view direction.
However, for a textured triangular facet, the observer can perceive not only changes in shape
and shading but also deformation of the texture pattern. As depicted in Fig. 4, an observer
located at position A, which is close to the normal vector of the triangular facet, can see a
mostly undistorted texture pattern. However, another observer located at position C perceives
the highly distorted texture pattern because location C is far from the normal axis of the
triangular facet.
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Fig. 4. (a) Disparity in observed texture patterns at different locations. (b) The approximately
linear relationship among the adjacent observation points.

How an arbitrary texture pattern on a triangular facet floating in object space is distorted
in the imaged triangular facet of retina space is fully explained by the geometric mapping
model developed in Section 2. According to the visual perception model, the shape and
texture pattern of the 3D object vary with changes in position, however, the observer can be
thought to perceive similar scenes when the observation location or view direction does not
change dramatically, meaning that interocular similarity exists between weakly separated
observation points.

In the context of a holographic 3D display, the observed images at both observation points
share the same holographic information through the similarity. From this point of view, we
suppose that the holographic image observed at the original point has a linearly approximate
conversion relationship with the other image observed at a neighboring point. Using the
supposed linear relationship between the two images, it is possible to approximate the
holographic information at the neighboring point by reconfiguring the information for the
original point [29]. We employ the affine transformation to represent the approximate linear
relationship among adjacent observation points. This strategy is illustrated in Fig. 4(b). From
a practical point of view, it is expected that it can be used to reduce the computational
complexity of the CGH algorithm so that the computation speed of polygon CGHs can be
dramatically increased.
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Here, let us develop the mathematical formulation of this strategy based on the geometric
mapping  transformation of the previous section, (x'(u’,v'),y'(u’,»"),0) and
(u'(x', "),V (x,»"),0) . Firstly, we set up the referential retina space and its adjacent retina
space which are denoted by, (u v’wf) and (u’a g2V dj) , respectively, as shown in Fig. 4(b).

ref 2
Although the two triangles on the local coordinates of the referential and adjacent retina
spaces would appear to have different shapes, their relationship is described by the affine
similarity transformation. After determining the three apexes of the triangular facets,

’ ' ’ ’ ' ’ ; 3
(urem,vwm) , (urem,vrem) , and (”ref,3’vrej',3) in the referential space and the

3 ’ ’ ’ ’ ’ ’ 3 3 3
corresponding apexes, (u ad/'],vam), (uud/‘,z’vad/'i) , and (uudf’],vw‘,/.vz) in adjacent retina

spaces for a target triangle facet in object space, their relationship is written as
a, a,\(u, b u'
[ 11 12} 'f,l +[ 1)2 ,dj,l i (25)
a21 a22 v ref 1 b2 v adj,1
a,  ay (U b u'
[ 11 l2j '/,2 +( lj: ’(11,2 , (26)
Ay Ay )\ Vi b, Vg2
a, a,\(u, b u'
11 12 , of 3 + 1 'dj,3 . (27)
Ay Ay )\ Vi b, Vadi3

Equations (25)-(27) are combined as a matrix equation

!

Wi Vi 0 0 1 0} a, Uogi1
0 0 u 're/',l v 'ref,l 0 1 a, v ,ad/' Bl
. u’,‘ef‘2 v’mﬁ2 0 0 1 0 a, _ u'{w,j)2 28)
0 0 Wers Vo 0 1|l ay, Vigin '
u 'ref,3 v ’ref,3 0 0 L 0] b u Iadj,3
0 0 u ,ref,3 v ’ye/,s 0 1){ b, v ,adf,S

and it is solved to produce the conversion relationship between the two local coordinates of
the referential and adjacent retina spaces as

(an a1zj(u}ef}+(blj=(M:ad/j. (29)

Ay Ap )\ Vi b, Vg

In the previous section, how the uniform grid on the local coordinates of object space is non-
linearly mapped to that of retina space was established. From Fig. 3(b), the mapped grids on
the local coordinates of the left and right eyes have different aspects because their positions
and view directions are apparently dissimilar. However, if both eyes are located near to each
other or their view directions are not significantly different, we are able to define the
conversion relationship among their local coordinates using Eq. (29). It should be noted that
there must be some errors in this assumption, which will continue to be estimated.

The validity of the affine interocular similarity is analyzed with a numerical simulation, in
which it is assumed that the observer watches the center of a triangular facet lying in the xy

plane while moving in the designated observation section as shown in Fig. 5(a). Four
observation sections are set up which are designated in terms of longitudinal angle ¢ (0, 15,
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30, and 45 degrees) azimuthal angle ¢ (15 to 15 degrees). It is also assumed that the

reference points of each observation section are located in the middle of each section.

Ref. point

St S

Ref. point \‘\\ 6 = 45°
T v & ¢=-15°~15°
/ NN, e O
e, [0=30°
Ref. point & ¢=-15°~15°
e, [e=15°
Ref. point & p=-15°~15°
................... ‘\ 6=0°
........ & $=-15°~15°
(a)
3 Q:150)¢:_150
A A

w

3%

et

(b)

Fig. 5. (a) Schematic diagram for analyzing interocular similarity and (b) the comparison of
two grids calculated by the exact and approximate method.

Under these circumstances, let us use an example to clarify the purpose of this simulation.
When the observer is located at # =15° and ¢ =-15°, we can determine how a uniform grid

on the local coordinate of the triangular facet in the object space is mapped to the non-
uniform grid of retina space. There are two ways to represent the non-uniform grid in retina

space. The first is the exact method using (u’(x’,)"),v'(x’,)’),0) . The other is the

approximation method using the affine transformation of Eq. (29).

The accuracy and tolerance of the approximate method is examined by comparing it with
the exact method. Figure 5(b) presents two overlapping grids calculated by the exact and
approximate methods, colored red and blue, respectively. It can be observed that the overall
shapes of the two grids are similar. However, there is a small difference between them around
the outer edge, indicated by the shaded area A in Fig. 5(b). The effective portion in the total
grid is eventually restricted to a finite interior area of the triangle in the local coordinates of
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retina space. In the shaded area B of Fig. 5(b), the two grids closely match around the center
where the triangle is located.

The validity of the approximate method is evaluated using the simulation analysis shown
in Fig. 6. After deriving two grids using the exact and approximate methods for a particular
view point, we calculated the root mean square error (RMSE). RMSE graphs were then
constructed from the results of the following two cases: (1) RMSE for all parts of the two
grids and (2) RMSE for the interior region of the triangle, as shown in Figs. 6(a) and 6(b),
respectively. The RMSE of the case (1) would be larger than that of the case (2). In the
calculation of RMSE, all values of the cases (1) and (2) are normalized with the maximum
value of the case (1).

x10° Exact grid and affTr grid (theta=45, phi=45) RMS error for total grid
' ' k iw ::.
*  Blue: Reference grid :
3 > 09F% - THETA=15(deg)
133 "k THETA=30(deg) i
o) 08 - THETA=45(deg) |/

RMS error
o o o o
a0 > S

o
w

02

5 10 15

2 15 - 0.5 [ 05 1 15 -15 -10 - 0
o PHI (deg)
X
x10" Fxactgridand affTy grid (theta—45. phi-45) < 10° RMS ertor for triangle interior
®  Red:Transformed grid by affine 35 —
©  Blue: Reference grid :

THETA=45(deg)

RMS ermor

-5 0
-3 PHI (deg)

Fig. 6. Analysis results for interocular similarity: (a) two comparison grids calculated by the
exact and approximate methods, (b) the RMS error graph for total area, and (c) the RMS error
for the interior area of the triangle.

The RMSE tends to increase exponentially as an observation point moves further from the
reference point in the ¢ direction. When fixing ¢ as one value, the RMSE also increase

proportionally with €. Thus, we need to consider the applicable scope including a reference
point and its adjacent points before we apply this proposed method to calculate multi-view
CGHs. However, the RMSE for the case (2) is definitely smaller than that of the case (1). It
means that the approximation method is sufficiently reliable if the triangle is small enough to
be covered by the affine transform under a reasonable tolerance. In practice, the unit triangle
facets that make up a 3D object are sufficiently small to represent it accurately with triangle
meshes. If the unit triangles are too large to exploit the proposed method, the triangle facet
should be divided into smaller triangles.
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4. Affine-similarity transformation of holographic three-dimensional image light
fields

In the polygon CGH synthesis theory [15, 16] that we have developed in previous papers,
CGH patterns are obtained by propagating the observable holographic image in the retina
plane into the CGH plane through the inverse cascaded generalized Fresnel transform [15].
Therefore, when we calculate CGH patterns, the majority of the computation time is used in
obtaining the holographic image in the retina plane. A complex process is required to
calculate the observed image in the retina plane because light field distributions, which are
emitted by all of the unit triangles that msake up the 3D object, have to be synthesized in the
retina plane. In particular, for multi-view CGH calculations, the computational complexity
can be exceptionally high because it is proportionate to the number of views that will be
recorded in the CGH pattern. However, the similarity due to the affine transformation can be
exploited to significantly improve multi-view CGH calculation.

In this section, an affine-reconfigured polygon CGH is formulated and the validity of the
affine approximation and its effect on improving efficiency are tested with a comparison to an
exact re-computed CGH model. The approximate light field distribution of the adjacent retina
space is derived by referring to that of the referential retina space. First, the angular spectrum

representations of the triangular facets P’ P', ,P', , and P, P’ . P’ . are given in the

retinal space as

F (” eV e ) = ” A (a,"e,f v ) eXp [j Zn(a',efu ot T BV )] de, df,.(30)

and
G (V) = [[ A (s By ) X0 727 (0 '+ By ) |40 B B1)

The mathematical relationship of F (u’

e >V e ) and G(

adi® adj) is based on the affine

transformation. The affine transformation solves (u'a oV ady ) for ( as

'
ref v ref )

G
Vi Ay Gy )\ V% b,
The substitution of Eq. (32) into Eq. (31) leads to

G(ayu',,
= ” Ay (g Py)

Xexp{jZﬂ'[O/ﬂd/ (au'y +ayv', +b)+ By (@', +ayy',, +b )]}da’udfdﬂ'adf
=”{AM} (aad, ﬂd,)exp[ﬂﬂ'(aad/b + 040, )J}

Xexp{]Zﬂ'[(a“a +a21ﬁad]) /+(a12a +a22ﬂadj) re/:|}daad]dﬁad]
(33)

a’ref _ alla’adj + aZlIB'adj 34
B e, +a,B.. ) (34
ref 12 4q 22 adj

’ ’
+apv', +b,a,u

r
rer TV oy T b,)

Let o, and ', b
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the differential area do’, df,, is then given by dot, df,, =(a,a,, —a,,a, )de ,d B, .

Therefore the equality of F ( Upyrs rgf) = G(a11 ,tapy', +h,au, +a,y,  +b, ) leads to

the equality of the angular spectrum integrals as
F (g vy )
= ” A (0{ o> B ) 28Y |:] 2r ( o, ity + B etV rer )J ot d B et

= J‘J‘ Amf (a,re_/ H ,re_/' )exp |:j2ﬂ-(a’refu ,re_/' + ﬂ’refv’ref ):| (a11a22 - a12a21 ) da'adjdﬂ'adj

—G(a“ +a12vref +b,a,u’, +a22vref +bz)
= H A, a’adj, " )exp[jzr:(oz’mjb1 + by )] exp [jZ;r(a’refu'rg,. +BVy )] do/ ,dp.,.
(35)

Letting F( Ups » ,ef) equal to G(all oy TV Hhau,  +ay,v rej.+b2), the angular

spectrum of the adjacent local field 4, (a'adf, ) is solved by

!
adj

Ay (g ',ld,-)

= exp[_jzﬂ(a'adjbl + 0.4 )J (a4, —ay,a,,) A (a'ref e )
= exp[_jzﬂ(a’adjbl + ﬂ’adij ):| (anazz — a4y, ) Aref (alla"adj + aZIﬂ’adj s alza’adj + aZZﬂ’adj )
(36)

The result of Eq. (36) certifies that the angular spectrum of the adjacent local field
Ay The

adj

' dj) is calculated from the geometric transformation of A,gf(

’
adj > ref > /) :

angular spectrum representation of the adjacent local field G( >V adj) is represented by

G(u’adj,v’ )

adj

= jjexp |:_j2ﬂ'(a,udjbl +ﬂ,¢1djb2 ):|(a11a22 _a12a21 )Are/ (alla +a21ﬂudj alZO'/ T aZZﬂudj )
xexp[jZn(a’adju'adj +,B’adjv’adj )]da’adjdﬁadj

= I ,[ Ay (“’ad/” "ud )EXP [j Zﬂ(a’adju i TBagV g )] de ,df .
(37)

In addition, the spatial coordinate variables (u'a iG>V ag oW dj) in the adjacent local coordinates

is connected to the spatial coordinate variables (uadj,vadj,wa "

) in the adjacent global

coordinates by GroL as

’
u

adi cosf, 0 -—sind, cosd,, sing,, O u,,—u,,
vy |=| O 1 0 |x|-sing,, cosd, O v, —V.
Wiy sind,, 0 cosd,, 0 0 1)\ W,y = Way
(38
cosf,, cos@,, ¢cosb,,sing,, —sinb,; \[ U, —u,,
= —sin » cos @, 0 Vadi ~ Vadc
sing,, cos@,, sing,,sing,, cosb, |\ W, —W,.
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v

adj,c’w

adj,c

The point (u ) is the center of mass of P, P ,P, , in the adjacent global

adj,c> adj,1” adj,2™ adj,

coordinate  located at its origin. Let wus set a carrier plane wave
I'=n, exp[ Jj2r (aoua i T BV T VoWay )] incident to the unit triangle aperture in the adjacent

global coordinate system, the illuminating plane wave in the adjacent local coordinate system
is obtained by the inverse transformation of Eq. (38) as

=7, exp{j2ﬂ'[0{’ ( U )+,B0 (v +vad/ . ) +7, (w W )J} . By multiplying
this illuminating plane wave to Eq. (37), the light field distribution on the unit triangular facet
in the adjacent local coordinate is obtained as

7 7
W(uadf’vadf’o)

=7709Xp{j27[|:a ( +“ad,¢)+ﬁo( +”ad,¢)+7o ad/c:|}

oo oo

X I _[ Aadj@L (a;dj’ﬂadj )exp|:j27r( adj ad/ + adj ad/ )] adjdﬁadj (39)

—oc0 —oo

=T exp[]ZH(a uadj(‘ +ﬂo Ugjc +%'w adjL):|

oo oo

X,[ ,[ Aad/@L(“ . By — ﬂO)eXp[ﬂ” ( Ayl + By adl):| %yl By

—oc0 —oo

To convey the meaning of the notation more clearly, we attach notation @L behind the adj
in 4, ( Xys ﬂ;dj) of Eq. (36). It means that AM@L( oy By ) is the angular spectrum of the

adjacent local field, and in the same way, we use @G to designate the terms of the global
coordinate system. The light field distribution W( wdi® adj,w’adj) for the entire space of the

adjacent local coordinate is obtained by

W(u' VoW )

adj > " adj adj

. 7 7 ’ /7 / 4
=T exp[fzﬂ'(ao”ad/,c + ﬂOvad/',v + VoW ):|

XI _[Aad/(,L aO’ﬂad] ﬂo)exp[]Zﬂ'( (22 ad] +ﬂadj adi +7/adj ad] ):| ad]dﬂadj

—c0 —co

(40)

From Eq. (38), the components of the Fourier spatial frequency vector (a’a i3 Baiis Vg ) in the

adjacent local coordinates also have the conversion relationship by the Fourier spatial
frequency vector ( Uoii> B> Ve dj) of the adjacent global coordinate system as

ad/( s ﬂadj)—cosé? c0sd,,&,,; +cosb,, sing,, B, —sinb,,y,,. (41)

By (. By ) = —sing,,ct,, +cosd,, B, (42)

’

Yo (audf,ﬁudf) =sin@,, cosd, &, +sin6,, sing, B, . +cosb, 7., (43)

The differential area in the adjacent local coordinate system de’',,d B, is thus given by



Research Article Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 16869

Optics EXPRESS

adj( adj ﬂadj)dﬂﬂd]( ad] ’Badj)
=|de,,dp, “9
do,,dp,,.

By substituting Eqgs. (41), (42) and (44) into Eq. (40), we can derive the diffraction field in the

=‘cost9adj+s1nl9adj(a'adjcos¢d,+ i SN, /Vad,

adjacent global coordinate system W( v

uadj > Vadj° Wadj )

W (1 Vg Way)

=T], eXp |:j2ﬂ-(a0um{f,u + ﬂovadi,c Yo Wadj e ):|

0o oo

X [ [ Aar (@ (@ugoBus) = (@0 B)) B (@ B ) = By (s B)H (Ve (s By )

—c0 —00

Xexp{]Zﬂ'[ adj (” a adjc)+ adj( wdi adjc)—‘r}/adj( Weai Wadj,c)]}
de,,dp.,.

‘cosHadj+sm<9adj( i €08 Doy + By sin » /;/adj
(45)

When calculating Eq. (45), the condition 7/, ( i By ) >0 has to be satisfied; angular
spectrum values at any frequency that do not satisfy this condition must be zero. Accordingly,
the unit step function H (7a g ( Q,

adj °

B, " )) is contained in Eq. (45) [12]. The angular spectrum

in the adjacent global field 4, ( > B dj) is represented as

Ayac (O’ad/’ﬁad/)

=1y exp| J27 (gt + BV + ViV )]
XAyar (a,adj (O‘aca’ﬁadj)_a'o (@:5) B (“adjﬁadf )—,B’O (@,.5 )) (46)
XH(Vaw(“aw»ﬂacu))eXp{fz”[ % (- “dlc)+ ad/( Vg )+ Vg (= d/):|}

X‘cosHadj+sin<9ad (0{ cos@,; + B, sing,, /;/adj

From Eq. (36), Aadj@L( adj( Qs ﬁadj) o, (aO’ﬁO)’ﬁ,ad/( ., ﬁadj) B (O‘D’ﬁo)) is
manipulated as
Ay (@ (@ugo By )= (@0, B)), Bl (2 By ) - B (,.5,))
= Ayar (a”adi’ﬂ”udf)
= expl:_jzﬂ.(a”adjbl +:B”adjb2 )](auazz _a12a21)

XA;ef (all adj +a21ﬂ adj ® a]2a, +a22ﬁ ad/)

(47

where ", and ", are defined by, respectively

a”ac{f ad/ ( ud/ ﬁud/ ) (aO > ﬂO ) > (48)
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ﬁ”ad/‘ = ﬁ’ad/’ (aadf’ﬂadj ) - ﬂIO (ao > IBO ) (49)

Finally, by substituting Egs. (47), (48) and (49) into Eq. (46), the angular spectrum of the
adjacent global field 4, ; (0{” s B ) is solved for 4,

Ayac (audj By )

=11, xp| 27 (@t + BV + VWi ) |H (Vi (@ Bus))
Xexp{j27[|:0(adj (“ttuy )+ By (Ve )+ Vg (W )J} (50)
X|cos 6, +sin 6, (@, cosg, + 8. sing, ) /7, | exp [—jZ;r(a”adjbl + B b, )]
X (ay,ay —a,ay ) A, (@, +ay . 0,0 +an ")

This means that the angular spectrum of the triangle facet in the adjacent global coordinate
system is calculated from that of the referential local coordinate system. Therefore, we
establish the CGH computation process as follows: (1) prepare the primitive angular spectrum
of the referential local coordinate system in advance, (2) compute the light field distribution
of the adjacent global coordinate system by reconfiguring the primitive angular spectrum
data, and (3) using the inverse cascaded generalized Fresnel transform from the retinal plane
to the CGH plane [13, 15], convert the light field distribution in the retina plane to the CGH
pattern. The intermediate view CGH is not generated by re-computing the entire process, but
by reconfiguring the primitive data of the reference observation point. This process is
expected to significantly reduce the computational complexity of wide-viewing angle polygon
CGHs.

To assess the efficiency of the proposed method, we compared the computing time for a
full-color CGH using the exact and approximate methods. In the calculation of the full-color
CGH, the red (633nm), green (532nm) and blue (473nm) components of the CGH were
independently calculated without color dispersion [13]. Similar to Fig. 4, we assumed that a
textured triangular facet was floating in object space and an observer is looking at it from a
specific location. This computation is performed in MATLAB using a workstation with
2.27GHz Intel Xeon E5520 CPU and 48GByte memory. The size of the single view CGH is
2,201%2,201. Figure 7 displays the simulation results. Using both methods under the same
computational conditions, we simulated the observer looking at specific objects while moving
around them. As shown in Fig. 9, the textured cube is floating Smm above the checker board
and the observer is looking at this scene along a diagonal direction toward the floating object.

We assume the observer’s rotational range is as 0 to 360 degrees in the azimuthal
direction and with an interval of 1 degree. Thus, 360 light field distributions should be
calculated for each viewpoint. To accomplish this simulation, 360 times re-computations are
required using the exact method. As indicated in Fig. 8(a), the exact method has two steps: (1)
obtaining a properly distorted texture pattern on the local coordinates in the observer’s retina
space and (2) numerically calculating the angular spectrum using a fast Fourier transform
(FFT) algorithm and interpolation. The entire process takes 11.8513 seconds. On the other
hand, the approximate method has three steps: (1) obtaining the properly distorted texture
pattern on the local coordinates in the referential retina space, (2) calculating its angular
spectrum with the FFT (this result is regarded as the primitive data) and (3) obtaining the
angular spectrum by reconfiguring the primitive data as indicated in Fig. 8(b).
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Fig. 7. The observation image of a full-color CGH calculated using (a) the exact method and
(b) the approximate method.

Although the approximate method has one more step than the exact method, the
computation time of the entire process is much shorter at 6.397 seconds. The efficiency of the
new method would be even more dramatic for multi-view CGH calculations because the step
(3) of the approximate method is only implemented to calculate the new angular spectrum of
the adjacent observation point if the primitive data is pre-calculated. Using the exact method,
however, the entire process must be implemented each time. Therefore, the computation
times for the exact and approximate methods are 11.8513 and 1.9773 sec for one cycle,
respectively. As described above, however, we can efficiently calculate the CGH with the
approximation method. In this case, we assume an applicable range of 20 degrees to apply the
proposed algorithm. For example, one section covers 35° to 55° if the reference point is
located at ¢ =45°. Therefore, 18 observation sections are required and the light field

distribution of each observation point is approximately calculated by reconfiguring the
angular spectrum of its referential local coordinates.
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Fig. 8. The elapsed time for calculating the CGHs using (a) the exact method and (b) the
approximate method.

Figure 9 displays the simulation results verifying the accommodation effect of the CGH
computed by the affine approximate method. If the eye lens focuses on a particular object,
that object is clearly recognized while other objects are blurred. The observed
accommodation effect in Fig. 9 proves that the approximate method is accurate with its error
not observable.

Focusing on the front object (theta=-45, phi=75) Focusing on the rare object (theta=-45, phi=75)

x-axis [mm]
x-axis [mm]

0.5 0 0.5 -0.5 0 0.5
y-axis [mm] y-axis [mm]
() (b)

Fig. 9. Verifying the properties of a 3D holographic image with the accommodation effect: (a)
when focusing on the cube and (b) when focusing on the checker board.

5. Concluding remarks

In conclusion, we have presented a concrete theory for interocular similarity and proposed an
inter-view reconfiguration algorithm for textured polygon CGHs for view-direction change
using an approximate affine transform. The effectiveness and efficiency of the approximate
affine transform was proven with a numerical simulation, in which the reconfiguration
algorithm based on the affine transform was applied to accelerate the computation of
intermediate view CGHs for multi-view polygon CGHs. This work fllas under the umbrella of
holographic information theory, an emerging field of optical information processing, which is
a crucial component of next generation holographic 3D display technology.

Appendix

In the Appendix, we prove the relationship between the local coordinates of a triangular facet
in the original global coordinate and the adaptive global systems shown in Eq. (24). The local
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coordinates of a triangular facet in the adaptive global coordinates (x',,)’,,z’,) are solved for

its global coordinates (x,,y,.z,) as

, . .
X, cos@, cosg, cosé sing —sind, \(x, —x, X, —X,,
’ .
yl‘l = _Sln ¢II COS ¢II O yn _yl‘lC = GtOLR yn _yRC > (51)
4 : . .
z, sing, cos¢, sin@ sing, cosl, )\ z,-z, z, =z,

where 8, and ¢, are the longitudinal angle and azimuthal angle, respectively, representing
the rotated degree of the local coordinates relative to its global coordinates. This
transformation is denoted as adaptive global to local transformation (GtoL, ). The origin of
the adaptive local coordinates corresponds to the centroid of the triangular facet in the
adaptive global coordinates (x,.,y,..z,. ). Equation (51) can be modified by

’
'xn xn - an an - 'xm'
’
yn :GtOLn yn _ynO + ynO _ync > (52)
’
Zn Zn - Zr/O ZnO - Znu

where (x,,,¥,0.2,0) is the projection center in the adaptive global coordinates. By
substituting Eq. (7) into Eq. (52), we can get the following Eq. (53)

’
'xn X_XO an_xnc
’
yn :GIOLn R y_yO + ynO_ync : (53)
’
Zn Z_ZO ZnO _Zm‘

The original global coordinates (x, y,z) can be represented for its local coordinate (x',y’,z")

by original local to global transformation ( LtoG ), where LtoG is given by

X=X, cos@cos¢p —sing cosgsind )\ x’ x'
y—y, |=|singcos@ cos¢ singsinf || y'|=LtoG| y"|. (54)
z—z, —sin @ 0 cosd z' z'

Equation (53) can be expanded using Eq. (54) as

4 ’

X, x X, =X, X0 =X,
¥, |=GtoL, \R| LtoG| y" |+| ¥ =¥y ||| Yuo = Ve
z, z' z, -z, Zo = Zpe
' Xe —Xp Xno ™ Xne
=GtoL,-R-LtoG| y' |+ GtoL, | R| y. =¥y || Yoo = Ve (55)
4 2.7 % Zn0 " Zne

=GtoL,-R-LtoG| y' |,
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xc _'XO an _xnc
where R| y, -y, | is canceled out by | y,,—»,. |- As a result of Eq. (55), we can finally
Zc - ZO ZnO - ch

obtain the relationship of the local coordinates of a triangular facet in the original and
adaptive global system.
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