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Abstract: The interocular affine similarity of three-dimensional scenes is investigated and a 
novel accelerated reconfiguration algorithm for intermediate-view polygon computer-
generated holograms based on interocular affine similarity is proposed. We demonstrate by 
using the numerical simulations of full-color polygon computer-generation holograms that the 
proposed intermediate view reconfiguration algorithm is particularly useful for the 
computation of wide-viewing angle polygon computer-generated holograms. 
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1. Introduction 
Three-dimensional (3D) imaging and display technologies have been in active development 
over the past two decades. The basic principle of 3D display technologies [1] is the utilization 
of binocular 3D cues for the human visual perception system, with interocular disparity being 
the most effective of these cues. In a classical sense, the interocular disparity supposes that 
the parallax views of a 3D scene are considered completely different. 

In general, holographic 3D displays are considered the ultimate form of 3D display 
because they are able to deliver the most natural 3D images with accommodation-vergence 
match [2]. This accommodation-vergence match is ascribed to the interocular disparity 
included in the CGH pattern. The computer-generated holograms (CGHs) for holographic 3D 
displays contain all of the information on the continuous parallax views of a three-
dimensional (3D) scene, which is recorded in a CGH using single two-dimensional 
continuous complex fringe patterns and produces motion parallax effect as well as 
accommodation-vergence match. 
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Representation theory and rapid calculation algorithms have been two of the main CGH 
research issues. Various CGH representation theories have been developed, such as point 
clouds [3–8], ray-sampling [9–11], depth-map [12–14], and polygon [15–21] based CGH 
models. The polygon CGH is well known by computational efficiency, rigorousness of 
modeling and flexibility. The polygon CGH can be efficiently calculated by using fast Fourier 
transform (FFT) method, but the analytic theory of polygon CGHs has steadily continued 
[22,23]. The development of the fast algorithms has focused on parallel implementation on 
parallel computing hardware and related algorithm development [23–28]. The reduction in the 
complexity of CGH algorithms through mathematical analysis [29–31] from an information 
theoretic perspective is fundamentally important, but it is relatively rare in comparison with 
research on parallel computing.  

From an information theory perspective of CGH, we need to introduce the concept 
contrast to the interocular disparity, interocular similarity, where the different directional 
views of a 3D scene share a strong similarity. Interocular similarity is worth analyzing in 
depth since it gives new insight on the information of CGH and its utilization enables the 
acceleration of CGH. If we can exploit the interocular similarity of a 3D scene with finite 
viewing angle to synthesize intermediate view CGHs and its total calculation amount is 
reduced, it would be expected that we have a mathematical complexity reduction for the 
acceleration of CGH calculation. In this context, interocular similarity leads to the expectation 
that continuous parallax views share informational similarity and the actual informational 
capacity of a CGH can be smaller than the informational capacity of the conventional space-
bandwidth product [32, 33]. With this in mind, we can extend this to understand that the 
space-bandwidth product is the upper-bound of the amount of information that is containable 
in a finite-viewing-angle 3D image, because the conventional space-bandwidth product 
assumes that there is no relationship between adjacent views. 

This fundamental information theoretic perspective on CGH is the motivation of this 
paper with the primary questions being how we can efficiently use the interocular similarity 
of 3D objects to develop an accelerated algorithm for CGH synthesis and how interocular 
similarity can be represented efficiently. This paper presents a theoretical analysis of the 
interocular similarity among adjacent holographic images with angular separation. The 
interocular similarity between adjacent views can be represented by the affine transform of 
corresponding points and this property is extensively investigated and extended to efficiently 
synthesize wide-view polygon CGHs. An application of the proposed method to 360-degree 
multi-view CGH content generation [34–38] is presented. 

This paper is structured as follows. In Section 2, a geometric model of 3D scene 
perception is described. In Section 3, the affine transform analysis of the interocular similarity 
of a 3D scene is presented. In Section 4, an accelerated CGH algorithm based on the 
interocular similarity is proposed based on the wave optic interpretation with affine 
transformation for CGH calculation. Numerical experiments and the subsequent evaluation of 
the proposed accelerated CGH algorithm are presented with an example of 360-degree multi-
view CGH content generation. Finally, concluding remarks are provided in Section 5. 

2. Geometric model of three-dimensional scene perception 
In this section, we present a geometric model of 3D scene perception and analyze the 
interocular similarity of a 3D scene. The focus of the analysis is the non-linear relationship 
between two different parallax views in retina spaces derived from the 3D scene perception 
model. The non-linear relationship can be linearly approximated by an affine transformation 
even for quite large angular separation between two views, a process referred to the 
interocular affine similarity transform. The tolerance range for the interocular affine similarity 
is numerically analyzed using the interocular affine similarity transform. The interocular 
affine similarity established in this section is then applied to the accelerated CGH synthesis 
algorithm in Section 3. 
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A basic property of the visual perception system is that the monocular imaging system of 
the eye allows the viewer to see 3D objects by automatically adjusting its accommodation to a 
convergence point. In Fig. 1, two monocular imaging systems that share a convergence point 
are illustrated, with the global reference coordinate system and the local coordinate systems 
for the left and right eyes denoted as xyz , 1 1 1u v w , and 2 2 2u v w , respectively. When both eyes 

are focused on the convergence point, then the foci of two eyes are automatically adjusted to 
the convergence point. The perceived image in the eye varies with changes in eye position. 
Here, we develop a geometric model of this monocular imaging based on an arbitrary location 
and rotation. 

 

Fig. 1. Convergence and accommodation in the binocular visual perception system (a) global 
and local coordinates and (b) adaptive global coordinate system. 

Let us set the convergence point as ( ), ,c c c cP x y z=  and the projection center of the eye as 

( )0 0 0, ,N x y z=  in the global coordinate system, where the projection center N  is the center 

of the eye lens. In normal conditions, the unit vector u  is on the viewing plane, which is the 
plane specified by the u and w vectors, and the unit vector v  is normal to the viewing plane. 
The optic axis vector of the eye in the global coordinate system is given by 

( )cos sin ,sin sin ,cosφ θ φ θ θ=w . The coordinates of the projection center N  is then solved 

by 
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 ( ) ( ) ( ) ( )( )2 2

0 0 0cos ,sin , ,c c cz z t x x y y tθ θ = − − + −  (3) 

 ( ) ( ) ( ) ( ) ( )( )0 0cos ,sin sin , sin .c cx x t y y tφ φ θ θ= − −  (4) 

The v-axis unit vector of the retina coordinate system v  is obtained by 

 ( )cos cos sin sin cos , sin cos sin cos cos ,sin sin ,φ θ τ φ τ φ θ τ φ τ θ τ= − − − +v  (5) 

where τ  is the tilt angle of the eye that is adjusted to make u  parallel to the xy  plane. 

Because the eye’s focus remains on the convergence point, when the convergence point 
moves, the focal length of the eye varies in accordance with 

 ( ) ,e ef d t d t= +  (6) 

where ed  is the distance between the eye lens and the retina plane, and t  is the distance 

between the convergence point and the eye plane form Eq. (2). In addition, in order to 
consistently describe the wave optic imaging and CGH synthesis theory using the same 
framework, we need to define an adaptive global coordinate system for the eye, as seen in 
Fig. 1(b). In the adaptive global coordinate system of the eye x y z′ ′ ′ , the 3D scene is rotated 

relatively to align the optic axis of the eye with the global coordinate z-axis. The optic axis z′  

is matched to the optic axis w  and the plane x y′ ′  is parallel to the plane uv . As a result, the 

adaptive global coordinate systems are obtained, respectively, as 
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 (7) 

where the rotational matrix and the projection center, N , in the virtual global coordinate 
system, are set as 
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 (8) 

 ( ) ( )2 2 2
0 0 0 0 0 0, , 0,0, .x y z x y z′ ′ ′ = + +  (9) 

The imaging of a 3D object in the retina space of the observer’s eye is interpreted by the 
adaptive coordinate system, which is schematically illustrated in Fig. 2. 

For simplicity, from this point forward, the notation xyz  will be used instead of x y z′ ′ ′  to 

represent the adaptive global coordinate system. Consider the imaging of a 3D object through 
a single eye illustrated in Fig. 2, where the triangular facet in object space is imaged in the 
retina space of the viewer’s eye. The center of mass of the triangular facet is denoted by 

( ), ,c c cx y z  and the eye focus is set to the center of mass. A triangular facet in the object 

space is delivered to the retinal space through the geometric imaging transformation [16]. The 
focal length of the eye lens f  is set by 

 ( )1 21 1 1 .cf d z d= − +  (10) 
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where the parameter t  is obtained by substituting Eq. (14) into Eq. (12): 
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In a similar manner, ( ), ,u v w  is solved as 
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where the parameter s  is obtained by substituting Eq. (16) into Eq. (13): 
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Each triangular facet has its own local coordinate system with the origin set to the center of 
mass denoted by x y z′ ′ ′  and u v w′ ′ ′  in Fig. 2(b) [15]. The local coordinates of a point in object 

space is solved for the global coordinates 
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The local coordinate of the corresponding point in the retina space is given by 
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Here, ( ), ,x y z  and ( ), ,u v w  have the corresponding local coordinates ( ),x y′ ′  and ( ),u v′ ′ , 

respectively. ( ), ,c c cx y z  and ( ), ,c c cu v w  are the centers of mass of the triangles 1 2 3PP P  and 

1 2 3r r rP P P , respectively. The local coordinates of the object space is functionally related to 

those of retina space in the form of ( ),x x u v′ ′ ′ ′=  and ( ),y y u v′ ′ ′ ′=  or, inversely, 

( ),u u x y′ ′ ′ ′=  and ( ),v v x y′ ′ ′ ′= . ( ), ,0x y′ ′  is solved for ( ), ,0u v′ ′  as 

 

( )1 1 2 1 2

cos cos cos sin sin 0

sin cos 0 0 ,

sin cos sin sin cos

c

c

c

x' u u x

y' v t v y

z' d d d w d d w z

θ φ θ φ θ
φ φ

θ φ θ φ θ

 − − −      
       = − − + −       

       − + + + + −       
  (20) 

where t  is given by Eq. (15) and ( ), ,u v w  is represented by 
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positions of the eyes. This perception process can be visualized by the mapping of uniform 
grid in object local space to non-uniform grid in retina local space, in which the uniform grid 
image is stretched asymmetrically on the retina imaging plane and its shape changes for 
different positions. The simulation in Fig. 3 illustrates two processes: (1) how the triangle 
looks on the image plane of each camera and (2) how a uniform grid on local coordinates of 
the triangular facet floating in global object space is mapped to the local coordinates of the 
imaged triangular facets for both eyes. The first row of the chart in Fig. 3(b) shows that the 
perspectives of both eyes differ for the same scene. In the second row of the chart, we can see 
that the uniform grid on the local coordinates of object space is non-linearly mapped to that of 
each retina space. The two non-linear grids also exhibit different patterns because the location 
and view direction of both eyes are inconsistent. 

It is important to consider the coordinate transform of a point in the local coordinate 
system of a facet to the local coordinate system of the adaptive global coordinate system. This 
relationship is described by 

 .
n

n n

n

x x'

y GtoL LtoG y'

z z'

′   
   ′ = ⋅ ⋅   
   ′   

R  (24) 

The full derivation of Eq. (24) with the definitions of nGtoL , R , and LtoG , are described in 

the Appendix. From Eq. (24), the redefined grid ( ), ,n n nx y z'′ ′ on the adaptive local coordinate 

is solved for the uniform grid ( ), ,x y z'′ ′  of the original local coordinates. 

3. Interocular affine similarity of a three-dimensional scene 
If a triangular facet has a plain texture, the observer will notice variation in its shape and 
shading in response to spatial changes in the observer’s location and view direction. 
However, for a textured triangular facet, the observer can perceive not only changes in shape 
and shading but also deformation of the texture pattern. As depicted in Fig. 4, an observer 
located at position A, which is close to the normal vector of the triangular facet, can see a 
mostly undistorted texture pattern. However, another observer located at position C perceives 
the highly distorted texture pattern because location C is far from the normal axis of the 
triangular facet. 

                                                                               Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 16861 



Fig. 4
linear 

How an ar
in the imaged
model develo
texture pattern
thought to pe
change drama
observation p

In the con
share the sam
suppose that t
conversion re
supposed line
holographic i
original point
relationship a
a practical po
complexity o
dramatically i

4. (a) Disparity in 
relationship amon

rbitrary texture
d triangular fa
oped in Sectio
n of the 3D ob

erceive similar 
atically, mean
oints. 

ntext of a holog
me holographic
the holographi
elationship wit
ear relationshi
information at 
t [29]. We emp
among adjacent
oint of view, 
f the CGH alg
increased. 

observed texture p
ng the adjacent obs

e pattern on a 
acet of retina s
on 2. Accordin
bject vary with
scenes when t

ning that intero

graphic 3D disp
c information t
ic image obser
th the other im
ip between th
the neighbori

ploy the affine
t observation p
it is expected

gorithm so tha

patterns at differe
servation points. 

triangular face
space is fully 
ng to the visu
h changes in po
the observation
ocular similari

play, the observ
through the sim
rved at the orig
mage observed

he two images
ing point by r
e transformatio
points. This str
d that it can b
at the computa

ent locations. (b) T

et floating in o
explained by t

ual perception 
osition, howev
n location or v
ity exists betw

rved images at 
milarity. From 
ginal point has
d at a neighb
s, it is possib
reconfiguring t
on to represent 
rategy is illustr
be used to red
ation speed of 

 

The approximately

object space is 
the geometric 
model, the sh

ver, the observ
view direction 
ween weakly 

both observati
m this point of 
s a linearly app
boring point. U
ble to approxi
the informatio
t the approxim
rated in Fig. 4(
duce the comp

polygon CGH

y 

distorted 
mapping 

hape and 
ver can be 

does not 
separated 

ion points 
view, we 

proximate 
Using the 
imate the 
n for the 
ate linear 
(b). From 
putational 
Hs can be 

                                                                               Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 16862 



Here, let us develop the mathematical formulation of this strategy based on the geometric 
mapping transformation of the previous section, ( ) ( )( ), , , , 0x u v y' u v′ ′ ′ ′ ′  and 

( ) ( )( ), , , , 0u x y v x y′ ′ ′ ′ ′ ′ . Firstly, we set up the referential retina space and its adjacent retina 

space which are denoted by, ( ),ref refu' v'  and ( ),adj adju' v' , respectively, as shown in Fig. 4(b). 

Although the two triangles on the local coordinates of the referential and adjacent retina 
spaces would appear to have different shapes, their relationship is described by the affine 
similarity transformation. After determining the three apexes of the triangular facets, 

( ),1 ,1,ref refu' v' , ( ),2 ,2,ref refu' v' , and ( ),3 ,3,ref refu' v'  in the referential space and the 

corresponding apexes, ( ),1 ,1,adj adju' v' , ( ),2 ,2,adj adju' v' , and ( ),1 ,2,adj adju' v'  in adjacent retina 

spaces for a target triangle facet in object space, their relationship is written as 

 ,1 ,111 12 1

,1 ,121 22 2

,ref adj

ref adj

u' u'a a b

v' v'a a b

      
+ =      

      
 (25) 

 ,2 ,211 12 1

,2 ,221 22 2

,ref adj

ref adj

u' u'a a b

v' v'a a b

      
+ =      

      
 (26) 

 ,3 ,311 12 1

,3 ,321 22 2

.ref adj

ref adj

u' u'a a b

v' v'a a b

      
+ =      

      
 (27) 

Equations (25)-(27) are combined as a matrix equation 
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 
 
 
 
 
 
  
 

 (28) 

and it is solved to produce the conversion relationship between the two local coordinates of 
the referential and adjacent retina spaces as 

 11 12 1

21 22 2

.ref adj

ref adj

u' u'a a b

v' v'a a b

      
+ =      

      
 (29) 

In the previous section, how the uniform grid on the local coordinates of object space is non-
linearly mapped to that of retina space was established. From Fig. 3(b), the mapped grids on 
the local coordinates of the left and right eyes have different aspects because their positions 
and view directions are apparently dissimilar. However, if both eyes are located near to each 
other or their view directions are not significantly different, we are able to define the 
conversion relationship among their local coordinates using Eq. (29). It should be noted that 
there must be some errors in this assumption, which will continue to be estimated. 

The validity of the affine interocular similarity is analyzed with a numerical simulation, in 
which it is assumed that the observer watches the center of a triangular facet lying in the xy  

plane while moving in the designated observation section as shown in Fig. 5(a). Four 
observation sections are set up which are designated in terms of longitudinal angle θ (0, 15, 
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4. Affine-similarity transformation of holographic three-dimensional image light 
fields 
In the polygon CGH synthesis theory [15, 16] that we have developed in previous papers, 
CGH patterns are obtained by propagating the observable holographic image in the retina 
plane into the CGH plane through the inverse cascaded generalized Fresnel transform [15]. 
Therefore, when we calculate CGH patterns, the majority of the computation time is used in 
obtaining the holographic image in the retina plane. A complex process is required to 
calculate the observed image in the retina plane because light field distributions, which are 
emitted by all of the unit triangles that msake up the 3D object, have to be synthesized in the 
retina plane. In particular, for multi-view CGH calculations, the computational complexity 
can be exceptionally high because it is proportionate to the number of views that will be 
recorded in the CGH pattern. However, the similarity due to the affine transformation can be 
exploited to significantly improve multi-view CGH calculation. 

In this section, an affine-reconfigured polygon CGH is formulated and the validity of the 
affine approximation and its effect on improving efficiency are tested with a comparison to an 
exact re-computed CGH model. The approximate light field distribution of the adjacent retina 
space is derived by referring to that of the referential retina space. First, the angular spectrum 
representations of the triangular facets ,1 ,2 ,3ref ref refP' P' P'  and ,1 ,2 ,3adj adj adjP' P' P'  are given in the 

retinal space as 

 ( ) ( ) ( ), , exp 2 ,ref ref ref ref ref ref ref ref ref ref refF u' y' A ' ' j ' u' ' v' d ' d 'α β π α β α β = +  (30) 

and 

 ( ) ( ) ( ), , exp 2 .adj adj adj adj adj adj adj adj adj adj adjG u' v' A ' ' j ' u' ' v' d ' d 'α β π α β α β = +  (31) 

The mathematical relationship of ( ),ref refF u' v'  and ( ),adj adjG u' v'  is based on the affine 

transformation. The affine transformation solves ( ),adj adju' v'  for ( ),ref refu' v'  as 

 11 12 1

21 22 2

.adj ref

adj ref

u' u'a a b

v' v'a a b

      
= +      
      

 (32) 

The substitution of Eq. (32) into Eq. (31) leads to 

 

( )
( ) ( ){ }

( ) ( ){ }

11 12 1 21 22 2

11 12 1 21 22 2

1 2

11 21

( , )

,

exp 2

, exp 2

exp 2

ref ref ref ref

adj adj adj

adj ref ref adj ref ref adj adj

adj adj adj adj adj

adj

G a u' a v' b a u' a v' b

A ' '

j ' a u' a v' b ' a u' a v' b d ' d '

A ' ' j ' b ' b

j a ' a '

α β

π α β α β

α β π α β

π α β

+ + + +

=

 × + + + + + 

 = + 

× +




( ) ( ){ }12 22 .adj ref adj adj ref adj adju' a ' a ' v' d ' d 'α β α β + + 

 (33) 

Let ref'α  and ref'β  be 

 11 21

12 22

,ref adj adj

ref adj adj

' a ' a '

' a ' a '

α α β
β α β

+   
=   +   

 (34) 
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the differential area ref refd ' d 'α β  is then given by ( )11 22 12 21ref ref adj adjd ' d ' a a a a d ' d 'α β α β= − . 

Therefore the equality of ( ) ( )11 12 1 21 22 2, ,ref ref ref ref ref refF u v G a u' a v' b a u' a v' b′ ′ = + + + +  leads to 

the equality of the angular spectrum integrals as 
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( ) ( )
( ) ( ) ( )

( )
11 22 12 21

11 12 1 21 22 2
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, exp 2

, exp 2
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α β π α β α β

α

′ ′

 = + 
 = + − 

= + + + +

=




( ) ( ) ( )1 2, exp 2 exp 2 .adj adj adj ref ref ref ref adj adj' j ' b ' b j ' u' ' v' d ' d 'β π α β π α β α β   + +   
 (35) 

Letting ( ),ref refF u v′ ′  equal to ( )11 12 1 21 22 2,ref ref ref refG a u' a v' b a u' a v' b+ + + + , the angular 

spectrum of the adjacent local field ( ),adj adj adjA ' 'α β  is solved by 
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( ) ( ) ( )
( ) ( ) ( )

1 2 11 22 12 21

1 2 11 22 12 21 11 21 12 22

,

exp 2 ,

exp 2 , .

adj adj adj

adj adj ref ref ref
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j ' b ' b a a a a A ' '

j ' b ' b a a a a A a ' a ' a ' a '

α β

π α β α β

π α β α β α β

 = − + − 
 = − + − + + 

 (36) 

The result of Eq. (36) certifies that the angular spectrum of the adjacent local field 

( ),adj adj adjA ' 'α β  is calculated from the geometric transformation of ( ),ref ref refA ' 'α β . The 

angular spectrum representation of the adjacent local field ( ),adj adjG u' v'  is represented by 
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1 2 11 22 12 21 11 21 12 22
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exp 2 ,

exp 2
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G u' v'

j ' b ' b a a a a A a ' a ' a ' a '

j ' u' ' v' d ' d '

A ' ' j ' u' ' v' d ' d '

π α β α β α β

π α β α β

α β π α β α β

 = − + − + + 
 × + 

 = + 




 (37) 

In addition, the spatial coordinate variables ( ), ,adj adj adju' v' w'  in the adjacent local coordinates 

is connected to the spatial coordinate variables ( ), ,adj adj adju v w  in the adjacent global 

coordinates by GtoL  as 

 

,

,

,

cos 0 sin cos sin 0

0 1 0 sin cos 0

sin 0 cos 0 0 1

cos cos cos sin sin

sin

adj adj adj adj adj adj adj c

adj adj adj adj adj c

adj adj adj adj adj c

adj adj adj adj adj

u u u

v v v

w w w

θ θ φ φ
φ φ

θ θ

θ φ θ φ θ
φ

′     − − 
      ′ = × − −      

      ′ −      

−
= −

,

,

,

cos 0 .

sin cos sin sin cos

adj adj c

adj adj adj adj c

adj adj adj adj adj adj adj c

u u

v v

w w

φ
θ φ θ φ θ

  −
  −  
  −  

 (38) 

                                                                               Vol. 26, No. 13 | 25 Jun 2018 | OPTICS EXPRESS 16867 



The point ( ), , ,, ,adj c adj c adj cu v w  is the center of mass of ,1 ,2 ,3adj adj adjP P P  in the adjacent global 

coordinate located at its origin. Let us set a carrier plane wave 

( )0 0 0 0exp 2 adj adj adjj u v wη π α β γ Γ = + +   incident to the unit triangle aperture in the adjacent 

global coordinate system, the illuminating plane wave in the adjacent local coordinate system 
is obtained by the inverse transformation of Eq. (38) as 

( ) ( ) ( ){ }0 0 , 0 , 0 ,exp 2 adj adj c adj adj c adj adj cj ' u' u' v v w' w'η π α β γ ′ ′ ′ ′ ′Γ = + + + + +  . By multiplying 

this illuminating plane wave to Eq. (37), the light field distribution on the unit triangular facet 
in the adjacent local coordinate is obtained as 

 

( )
( ) ( ){ }

( ) ( )

( )

0 0 , 0 , 0 ,

@

0 0 , 0 , 0 ,

@

, ,0

exp 2

, exp 2

exp 2

adj adj

adj adj c adj adj c adj c

adj L adj adj adj adj adj adj adj adj

adj c adj c adj c

adj L adj

W u v

j u u u u 'w

A j u v d d

j u u 'w

A

η π α β γ

α β π α β α β

η π α β γ

α α

∞ ∞

−∞ −∞

′ ′

 ′ ′ ′ ′ ′ ′ ′= + + + + 

 ′ ′ ′ ′ ′ ′ ′ ′× + 

 ′ ′ ′ ′ ′= + + 

′ ′× −

 

( ) ( )0 0, exp 2 .adj adj adj adj adj adj adjj u v d dβ β π α β α β
∞ ∞

−∞ −∞

 ′ ′ ′ ′ ′ ′ ′ ′− +  

(39) 

To convey the meaning of the notation more clearly, we attach notation @L behind the adj  

in ( ),adj adj adjA α β′ ′  of Eq. (36). It means that ( )@ ,adj L adj adjA α β′ ′ is the angular spectrum of the 

adjacent local field, and in the same way, we use @G to designate the terms of the global 

coordinate system. The light field distribution ( ), ,adj adj adjW u' v' w'  for the entire space of the 

adjacent local coordinate is obtained by 

 

( )
( )

( ) ( )
0 0 , 0 , 0 ,

@ 0 0

, ,

exp 2

, exp 2 .

adj adj adj

adj c adj c adj c

adj L adj adj adj adj adj adj adj adj adj adj

W u v w

j u v w

A j u v w d d

η π α β γ

α α β β π α β γ α β
∞ ∞

−∞ −∞

′ ′ ′

 ′ ′ ′ ′ ′ ′= + + 

 ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′× − − + +  
 (40) 

From Eq. (38), the components of the Fourier spatial frequency vector ( ), ,adj adj adj' ' 'α β γ  in the 

adjacent local coordinates also have the conversion relationship by the Fourier spatial 

frequency vector ( ), ,adj adj adjα β γ  of the adjacent global coordinate system as 

 ( ), cos cos cos sin sin ,adj adj adj adj adj adj adj adj adj adj adjα α β θ φ α θ φ β θ γ′ = + −  (41) 

 ( ), sin cos ,adj adj adj adj adj adj adjβ α β φ α φ β′ = − +  (42) 

 ( ), sin cos sin sin cos .adj adj adj adj adj adj adj adj adj adj adjγ α β θ φ α θ φ β θ γ′ = + +  (43) 

The differential area in the adjacent local coordinate system adj adjd ' d 'α β  is thus given by 
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( ) ( )

( )

, ,

cos sin cos sin .

adj adj adj adj adj adj

adj adj

adj adj adj adj adj adj adj adj adj

d d

J d d

d d

α α β β α β

α β

θ θ α φ β φ γ α β

′ ′

=

= + +

 (44) 

By substituting Eqs. (41), (42) and (44) into Eq. (40), we can derive the diffraction field in the 

adjacent global coordinate system ( ), ,adj adj adjW u v w  

 

( )
( )

( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ){ }

0 0 , 0 , 0 ,

@ 0 0 0 0 0 0

, , ,

, ,

exp 2

, , , , , ,

exp 2

cos si

adj adj adj

adj c adj c adj c

adj L adj adj adj adj adj adj adj adj adj

adj adj adj c adj adj adj c adj adj adj c

adj

W u v w

j u v w

A H

j u u v v w w

η π α β γ

α α β α α β β α β β α β γ α β

π α β γ

θ

∞ ∞

−∞ −∞

 = + + 

′ ′ ′ ′ ′× − −

 × − + − + − 

× +

 

( )n cos sin .adj adj adj adj adj adj adj adjd dθ α φ β φ γ α β+

 (45) 

When calculating Eq. (45), the condition ( ), 0adj adj adjγ α β′ > has to be satisfied; angular 

spectrum values at any frequency that do not satisfy this condition must be zero. Accordingly, 

the unit step function ( )( ),adj adj adjH γ α β′ is contained in Eq. (45) [12]. The angular spectrum 

in the adjacent global field ( )@ ,adj G adj adjA α β  is represented as 

 

( )
( )

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ){ }

@

0 0 , 0 , 0 ,

@ 0 0 0 adj, 0 0

, , ,

,

exp 2

, , , ,

, exp 2

cos sin cos

adj G adj adj

adj c adj c adj c

adj L adj adj adj adj adj o

adj adj adj adj adj c adj adj c adj adj c

adj adj adj adj ad

A

j u v w

A ' ' ' '

H ' j u v w

α β

η π α β γ

α α β α α β β α β β α β

γ α β π α β γ

θ θ α φ β

 = + + 

× − −

 × − + − + − 

× + +( )sin .j adj adjφ γ

(46) 

From Eq. (36), ( ) ( ) ( ) ( )( )@ 0 0 0 adj, 0 0, , , ,adj L adj adj adj adj adj oA ' ' ' 'α α β α α β β α β β α β− − is 

manipulated as 

 

( ) ( ) ( ) ( )( )
( )

( ) ( )
( )

@ 0 0 0 0 0

@

1 2 11 22 12 21

11 21 12 22

, , , ,

,

exp 2

, ,

adj L adj adj adj adj adj, adj o

adj L adj adj

adj adj

ref adj adj adj adj

A ' ' ' '

A '' ''

j '' b '' b a a a a

A a '' a '' a '' a ''

α α β α α β β α β β α β

α β

π α β

α β α β

− −

=

 = − + − 

× + +

 (47) 

where adj''α  and adj''β  are defined by, respectively 

 ( ) ( )0 0 0, , ,adj adj adj adj'' ' 'α α α β α α β= −  (48) 
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 ( ) ( )0 0, .adj adj adj, adj o'' ' 'β β α β β α β= −  (49) 

Finally, by substituting Eqs. (47), (48) and (49) into Eq. (46), the angular spectrum of the 

adjacent global field ( )@ ,adj G adj adjA α β is solved for refA , 

 

( )
( ) ( )( )

( ) ( ) ( ){ }
( ) ( )

( )

@

0 0 , 0 , 0 ,

, , ,

1 2

11 22 12 21 11

,

exp 2 ,

exp 2

cos sin cos sin exp 2

adj G adj adj

adj c adj c adj c adj adj adj

adj adj c adj adj c adj adj c

r r r r r r r adj adj

ref adj

A

j u v w H '

j u v w

j '' b '' b

a a a a A a ''

α β

η π α β γ γ α β

π α β γ

θ θ α φ β φ γ π α β

α

 = + + 

 × − + − + − 

 × + + − + 

× − +( )21 12 22, .adj adj adja '' a '' a ''β α β+

 (50) 

This means that the angular spectrum of the triangle facet in the adjacent global coordinate 
system is calculated from that of the referential local coordinate system. Therefore, we 
establish the CGH computation process as follows: (1) prepare the primitive angular spectrum 
of the referential local coordinate system in advance, (2) compute the light field distribution 
of the adjacent global coordinate system by reconfiguring the primitive angular spectrum 
data, and (3) using the inverse cascaded generalized Fresnel transform from the retinal plane 
to the CGH plane [13, 15], convert the light field distribution in the retina plane to the CGH 
pattern. The intermediate view CGH is not generated by re-computing the entire process, but 
by reconfiguring the primitive data of the reference observation point. This process is 
expected to significantly reduce the computational complexity of wide-viewing angle polygon 
CGHs. 

To assess the efficiency of the proposed method, we compared the computing time for a 
full-color CGH using the exact and approximate methods. In the calculation of the full-color 
CGH, the red (633nm), green (532nm) and blue (473nm) components of the CGH were 
independently calculated without color dispersion [13]. Similar to Fig. 4, we assumed that a 
textured triangular facet was floating in object space and an observer is looking at it from a 
specific location. This computation is performed in MATLAB using a workstation with 
2.27GHz Intel Xeon E5520 CPU and 48GByte memory. The size of the single view CGH is 
2, 201 2, 201× . Figure 7 displays the simulation results. Using both methods under the same 
computational conditions, we simulated the observer looking at specific objects while moving 
around them. As shown in Fig. 9, the textured cube is floating 5mm above the checker board 
and the observer is looking at this scene along a diagonal direction toward the floating object. 

We assume the observer’s rotational range is as 0 to 360 degrees in the azimuthal 
direction and with an interval of 1 degree. Thus, 360 light field distributions should be 
calculated for each viewpoint. To accomplish this simulation, 360 times re-computations are 
required using the exact method. As indicated in Fig. 8(a), the exact method has two steps: (1) 
obtaining a properly distorted texture pattern on the local coordinates in the observer’s retina 
space and (2) numerically calculating the angular spectrum using a fast Fourier transform 
(FFT) algorithm and interpolation. The entire process takes 11.8513 seconds. On the other 
hand, the approximate method has three steps: (1) obtaining the properly distorted texture 
pattern on the local coordinates in the referential retina space, (2) calculating its angular 
spectrum with the FFT (this result is regarded as the primitive data) and (3) obtaining the 
angular spectrum by reconfiguring the primitive data as indicated in Fig. 8(b). 
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coordinates of a triangular facet in the adaptive global coordinates ( )n n nx' , y' ,z'  are solved for 

its global coordinates ( )n n nx , y ,z  as 

 

cos cos cos sin sin

sin cos 0 ,

sin cos sin sin cos

n n n n n n n nc n nc

n n n n nc n n nc

n n n n n n n nc n nc

x x x x x

y y y GtoL y y

z z z z z

θ φ θ φ θ
φ φ

θ φ θ φ θ

′ − − −      
      ′ = − − = −      
      ′ − −      

(51) 

where nθ  and nφ  are the longitudinal angle and azimuthal angle, respectively, representing 

the rotated degree of the local coordinates relative to its global coordinates. This 
transformation is denoted as adaptive global to local transformation ( nGtoL ). The origin of 

the adaptive local coordinates corresponds to the centroid of the triangular facet in the 
adaptive global coordinates ( )nc nc ncx , y ,z . Equation (51) can be modified by 

 
0 0

0 0

0 0

,
n n n n nc

n n n n n nc

n n n n nc

x x x x x

y GtoL y y y y

z z z z z

′  − −      
      ′ = − + −      

      ′ − −      

 (52) 

where ( )0 0 0, ,n n nx y z  is the projection center in the adaptive global coordinates. By 

substituting Eq. (7) into Eq. (52), we can get the following Eq. (53) 

 
0 0

0 0

0 0

.
n n nc

n n n nc

n n nc

x x x x x

y GtoL y y y y

z z z z z

′  − −      
      ′ = − + −      

      ′ − −      

R  (53) 

The original global coordinates ( ), ,x y z  can be represented for its local coordinate ( ), ,x' y' z'  

by original local to global transformation ( LtoG ), where LtoG  is given by 

 

cos cos sin cos sin

sin cos cos sin sin .

sin 0 cos

c

c

c

x x x' x'

y y y' LtoG y'

z z z' z'

θ φ φ φ θ
φ θ φ φ θ

θ θ

− −      
      − = =      
      − −      

 (54) 

Equation (53) can be expanded using Eq. (54) as 
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0 0
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0 0
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− −   
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R

 (55) 
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where 
0

0

0

c

c

c

x x

y y

z z

− 
 − 
 − 

R  is canceled out by 
0

0

0

.
n nc

n nc

n nc

x x

y y

z z

− 
 − 
 − 

 As a result of Eq. (55), we can finally 

obtain the relationship of the local coordinates of a triangular facet in the original and 
adaptive global system. 
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