
Metrological sensitivity improvement of 
through-focus scanning optical microscopy 
by controlling illumination coherence 

SHIN-WOONG PARK,1 BYEONG GEON YOU,2 GYUNAM PARK,2 YOUNGBAEK 
KIM,3 JUNHO LEE,2 JOONG HWEE CHO,3 YUN YI,4 AND HWI KIM

1,4,5,* 
1ICT Convergence Technology for Health & Safety, Korea University, 2511 Sejong-ro, Sejong 30019, 
South Korea 
2Department of Optical Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, 
Cheonan 31080, South Korea 
3Department of Embedded Systems Engineering, Incheon National University, 119 Academy-ro, 
Yeonsu-gu, Incheon 22012, South Korea 
4Department of Electronics and Information Engineering, Korea University, 2511 Sejong-ro, Sejong 
30019, South Korea 
5Department of Electrical and Computer Engineering, University of California, Davis, One Shields 
Avenue, Kemper Hall 2039, Davis, CA 95616, USA 
*hwikim@korea.ac.kr

Abstract: We investigate the influence of the degree of illumination coherence on through-
focus scanning optical microscopy (TSOM) in terms of metrological sensitivity. The 
investigation reveals that the local periodicity of the target object is a key structural parameter 
to consider when determining the optimal degree of illumination coherence for improved 
metrological sensitivity. The optimal coherence conditions for the TSOM inspection of 
several target objects are analyzed through numerical simulation. 
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1. Introduction

Conventional high-numerical aperture (NA) optical microscopy is limited in resolution and 
depth-of-focus (DOF) when measuring high-aspect-ratio and nano-scale structures. Recently, 
through-focus scanning optical microscopy (TSOM) was proposed as a solution to this issue 
of optical microscopy [1,2]. The prominent feature of the TSOM which is contrast to the 
conventional optical microscopy is its computation-assisted indirect metrology scheme, which 
requires TSOM to computationally interpret a measured TSOM image by comparing it to an a 
priori prepared TSOM reference image database. In practice, differential TSOM images are 
analyzed in terms of mathematically designed measures to explicitly extract the structural 
features that they implicitly reflect. TSOM image databases are numerically constructed using 
finely modeled optical scattering simulators to create reference targets based on a range of 
structural parameters. TSOM image computation engines can also be constructed based on 
the finite difference time domain (FDTD) method, finite element method (FEM) or Fourier 
modal method (FMM). 

To quantify the TSOM analysis, several quantitative measurement factors such as optical 
intensity range (OIR), different TSOM image (DTI), and mean square difference (MSD) are 
commonly used [1–6]. In practice, TSOM metrology uses MSD and OIR curves. In addition, 
the combined use of MSD and OIR can be used to determine the metrological information of 
the target sample. The difference of MSD becomes zero at the minimum point where the 
specification of the target sample is matched to a reference target in the TSOM image 
database. However, as the structural parameters deviate from the determination point, the 
MSD or OIR values move away from the minimum point where the structure is selected. 
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For the simulation experiment, TSOM image databases of the six targets were created for 
three levels of illumination coherence: incoherent, partially coherent, and coherent modes. 
For the respective ten steps of degrees of coherence, two hundred TSOM images like those 
presented in Fig. 5 were created for DTI calculations, corresponding to fin widths varying in 
0.1 nm steps. The DTI values were obtained from each database (DB) according to the 
reference widths of each structure, and their OIR and MSD values are plotted in Fig. 6 to 
compare the changes in those values. The differences in OIR values between the reference 
image and the DB image are calculated and those of the six target samples are shown in Figs. 
6(a)–6(f) (left panel in Fig. 6). In the case of the OIR of the DTI images, it is apparent that the 
OIR of the coherent lighting is more sensitive than that of the incoherent lighting. The OIR 
values corresponding to partial coherence are in between those of the incoherence and 
coherence graphs, as shown in the Fig. 6. Considering the difference between the OIR graphs 
of the six samples, the larger the local periodicity, the more the difference between the 
absolute value of OIR and the OIR slope depends on the coherence. In the plots in Figs. 6(g)–
6(l) (the right panel on Fig. 6), the structure is determined at the minimum value of the MDS 
curve. 

As shown in Fig. 6, the OIR graph increases or decreases sharply and linearly, and the 
MSD graph has a parabolic curve pattern with a dip. Thus, the variation around the dip 
(sample space with extremely small structural change) is round. Thus the MSD cannot easily 
pinpoint the optimal point. At this microscopic tuning stage of analyzing very similar shaped 
structures with small MSD differences, the OIR may be useful to find the dip of the MSD 
curve. That is why previous TSOM papers recommend the combinatorial use of the MSD and 
OIR. In actual TSOM for metrology, the parabolic curve of the MSD value around the true 
value of the MSD is calculated, so the curvature value of the curve must be large. For 
example, considering cases 1 and 2 (40nm and 100nm single fin structures), we can see that 
the MSD sensitivity under incoherent illumination is better than that of coherent illumination 
with respect to the true reference value. In other words, the incoherent TSOM is more 
sensitive for structural changes in the single fin structures, so in such cases the use of 
incoherent illumination is preferable to coherent illumination. This is an important feature for 
increasing measurement accuracy and reinforcing robustness to noise in real TSOM systems. 
This tendency continues to the multi-fin structures in cases 3 and 4. Figures 6(i)–6(j) indicate 
that the MSD curves of the coherent cases tend to be lower than the curves of the incoherent 
cases. That is, the incoherent TSOM increases sharply with distance from the reference value. 
On the other hand, a notable switch is apparent in cases 5 and 6, in that the MSD curves of the 
coherent cases tend to be higher than the curves of the incoherent cases and the coherent 
TSOM increases more sharply with distance from the reference value. 

In terms of MSD sensitivity, we can classify the six sample cases into two major 
categories, namely cases 1-4 and cases 5-6. The MSD of the first group showed higher 
sensitivity to incoherent illumination while the MSD of the second group exhibits higher 
sensitivity to coherent illumination. The physical origin of this noticeable difference can be 
qualitatively explained using the concept of local periodicity. Actually, for optical fields at 
546nm, cases 3 and 4 of the first group can be seen as effective media [19]. Accordingly, 
cases 3 and 4 can be equivalently to a single fin structure with an effective permittivity. They 
are considered homogeneous structures without local periodicity or more generally, local 
corrugation. From hundreds of numerical simulations, we could infer that the MSD sensitivity 
of target structures with deep subwavelength structures that can be considered effective media 
is higher with incoherent illumination than coherent illumination. On the other hand, the 
structures of cases 5 and 6, feature a local periodicity, which results in a diffraction pattern 
due to the homogenization of the effective medium. In such cases, the MSD of DTI by 
coherent illumination is more sensitive. In the structure of case 3, the 100nm fin pitch is deep-
subwavelength length and then appears to be an effective medium of 440nm total width rather 
than a periodic structure. In addition, the structures of cases 5 and 6 have respective 200 or 

Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1987 



300 nm pitch
which is mor
local periodic
effective med
simulation res
the structure i
effective med
phenomenon, 
we can drama

Figure 7 s
the degree of
546nm, TM m
calculated us
width, so stru
comparison. A
reference sam
sample space
deviations. W
deviation from
MSD curve) 
changing the 
shows the gr
illuminated w
changes from
cases 5-6 exh
increase or d
that degree of
show larger 

hes, and in suc
re sensitive to 
city is a criteri
dium and, there
search, this ph
is greater than 
dium only wh

we can concl
atically improv

Fig. 7. MSD plo

shows plots of 
f illumination c
mode, INA 0.1
ing comparati
uctures with w
As inferred in

mple shows the
 close to the m

We found that t
m the referenc
does not chan
degree of cohe

raphs of the M
with fixed INA 
m incoherence t

hibit a slight i
ecrease, and in
f coherence. T
gaps between

ch situations, a
coherent light

ion used to ju
efore, which co
henomenon wa
200 nm or not.
en its critical 
lude that if the
ve the sensitivit

ots of the simulatio

the variations 
coherence und
 and 0.3, and C
ve structures 

widths of 40 an
n Fig. 6, the s
e monotonic e
minimum deep
the MSD valu
e sample (near

nge in a perfec
erence as prese

MSD values of
of 0.1 and cha
o coherence, th
increase. As th
ncreased MSD

The variation o
 incoherence 

a type of crac
ting. In the TS
dge whether th

oherence level 
as classified ac
. This is becau
feature is sm

e degree of coh
ty of the TSOM

on structures: (a) IN

of MSD for th
der the same co
CNA 0.6). In t
shifted extrem
nd 42 nm, and
samples with a
evolution the M
p of the MSD

ue for a specifi
r the widely ro
ct monotonic i
ented in the sim
f the six samp
anges in the de
he MSDs of ca
he degree of c

D means more 
of the MSD cu

and coherenc

ck exists in a h
SOM measurem
he structure ca
is more approp

ccording to wh
use the sample c
maller than a c

herence of illu
M technique. 

NA 0.1 and (b)-(d

he structures in
onditions as in
this simulation

mely small 2 n
d 100 and 102
a relatively lar
MSD curve. W

D for the samp
fic sample with
ound dip of th
increasing or d
mulation result
ples (with 42n
egree of coher
ases 1-4 decrea
coherence cha
sensitivity to 

urves with INA
ce, but, nevert

homogeneous 
ment of nanos
an be consider
priate. Accordi

hether the total 
can be recogni

certain size. G
umination is ad

d) INA 0.3.

n Fig. 4 with ch
n Fig. 6 (wave
n, the MSD val
nm from the 

2 nm were use
rge deviation 

We tried to in
ples with tiny 
h extremely sm

he minimum sp
decreasing pat
ts of Fig. 7. Fi

nm and 102nm
rence. As the c
ase, while the 
anges, the MS

structural var
A 0.3 in Figs. 7
theless, presen

medium, 
tructures, 
red as an 
ing to our 
 width of 
ized as an 

Given this 
djustable, 

hanges in 
elength of 
lues were 
reference 

ed for the 
from the 

nspect the 
structural 
mall 2nm 
pot of the 
ttern with 
igure 7(a) 

m widths) 
coherency 
MSDs of 

SD values 
riations at 
7(b)–7(d) 
nt similar 

Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1988 



characteristics in terms of sensitivity. The MSD is highest when incoherent lighting is applied 
to cases 1-4. In cases 5-6, (Figs. 7(a), 7(c), and 7(d)), it is noteworthy that the MSD value 
rises to its maximum value in a region of partial coherent lighting. In addition, for the non-
effective medium samples in cases 5 and 6, in Fig. 7(d), the MSD curves are almost flat as the 
illumination changes from incoherent to partial coherent, but in the remaining cases 1-4 
almost flat as it transitions from partially coherent to perfectly coherent. Moreover, 
comparing the data corresponding to the INA of 0.1 and 0.3, we can see that the sensitivity of 
the MSD is higher for coherent lighting when decreasing the INA. This phenomenon implies 
that the smaller INA with coherent lighting produces larger MSD values and higher 
sensitivity with non-effective medium samples of local periodicity. In other words, when the 
diffraction pattern due to the periodicity of the target structure appears in the TSOM image, 
the sensitivity for resolving structural discrepancies is high when coherent lighting is used. 
However, for the case of aperiodic deep-subwavelength effective medium structures, it is 
incoherent lighting that results in more sensitivity. Thus incoherent lighting is expected to be 
more advantageous for measurement of aperiodic structures. 

4. Conclusion

In conclusion, we have shown the possibility of TSOM metrology sensitivity improvements 
through controlling the degree of the coherence of illumination. It is revealed that for the 
effective medium structures, including single fin and deep-subwavelength multi-fin 
structures, using incoherent illumination with high INA allows TSOM metrology to be more 
robust than using a high degree of coherent illumination. On the other hand, non-effective 
medium structures with local periodicity producing relatively strong interference in the 
scattering field are more sensitive to higher coherent illumination in terms of MSD. 
Elucidating an accurate interpretation of the relationship between the effective medium theory 
and the local periodicity of target structures in terms of quantitative criteria requires further 
theoretical research. In actual usage of the TSOM system, it is preferable to construct an 
appropriate adaptive illumination system capable of controlling the INA and of switching 
from partially coherent mode to incoherent mode according to the type of target sample. It is 
hoped that coherence-controlled TSOM will develop to become a high-performance in-line 
optical microscope inspection and metrology technique for state of the art semiconductor 
devices, such as the recent three-dimensional (3D) nanoscale semiconductor structures 
including silicon via (TSV) and fin field-effect transistors (Fin-FETs). 
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