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I. INTRODUCTION

The Fourier modal method (FMM) is one of the most 
powerful electromagnetic analysis methods in the field of 
photonics [1]. In FMM, the linear modal theory for light-
matter interactions is constructed based on Fourier analysis 
of Maxwell’s equations. The modal analysis is the crucial 
feature of FMM, which expands the vectorial optical field 
into a linear superposition of electromagnetic Bloch ei-
genmodes. In FMM, the dispersion relation and coupling 
rate of each eigenmode are extracted completely. On the 
basis of FMM, the modal spectrum of the vectorial opti-
cal field in photonic structures can be manifested [1]. For 
recent active-photonic applications such as quantum-dot 
light emitters or photoluminescence in nanowires, where 
light sources are embedded inside photonic structures, the 
modal analysis is also of prominent interest. A few previous 
studies dealt with the numerical modeling of a dipolar point 
source. The previous studies mainly investigated a periodic 
dipole arrangement in periodic structures. The discrete 
dipole approximation in a small-particle grid [2], the one-
dimensional integral model of a dipole located within or 

at the boundary of a planar layered structure [3], periodic 
arrangement of dipoles [4, 5], RCWA analysis of a central 
electric dipole in a nonuniform spherical system [6], and 
more, have been reported. However, generalizing FMM to 
an aperiodic structure is strongly needed, to analyze recent 
state-of-the-art light-source-embedding photonic structures, 
including larger-scale aperiodic active photonic structures 
such as organic light-emitting diodes (OLEDs). In contrast, 
our method introduces a generalized FMM technique for 
aperiodic multiblock structures using a scattering matrix 
(S matrix), and presents an aperiodic-optical-dipole-source 
model that prevents numerical errors due to the Gibbs phe-
nomenon. In this paper, the aperiodic model is enabled us-
ing perfect matched layers (PML), and the validity is veri-
fied through simulation of the real OLED model.

Here a novel FMM scheme for optical dipole radiation in 
a photonic structure is proposed, a scheme that is expected 
to be able to provide the requisite mode-theoretical analysis 
framework for light-source-embedded structures not only 
for the optical field distribution, but also for power flow and 
energy loss. For our theoretical description, we follow the 
conventions and symbols used in the previous FMM study [1].
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II. BIDIRECTIONAL  
SCATTERING-MATRIX FORMULATION

Two contrasting optical field distributions, generated by 
two dipole emitters with orthogonal polarization embedded 
in the active block, are presented in Fig. 1. In Fig. 1, the 
example multiblock structure is schematically shown, with 
specifications. A two-dimensional dipole emission source 
of wavelength 532 nm is placed at r = (0, 0, 0) in the active 
block. The vectorial field distribution for the dipole with 
polarization P = (1, 0, 0), and that for the dipole with po-
larization P = (0, 0, 1), are presented in Figs. 1(a) and 1(b) 
respectively. 

The field distribution is strongly dependent on the po-
larization state of the emission source. These field distribu-
tions are calculated by applying the method proposed in 
this paper to a basic radiative-device structure, to begin 
the description of the concrete theory more conveniently. 
This calculation is carried out by FMM, which allows us 
to analyze the modal structure of a field distribution. The 

modal-structure analysis provides in-depth insight about 
the optical power flow and energy loss, and their structural 
dependency. These topics will be dealt with in our further 
papers in the near future, but here we focus on the develop-
ment of the novel extended FMM for optical dipole radia-
tion.

Such a light-source-embedded photonic structure is 
modeled by the bidirectional multiblock structure shown 
in Fig. 2(a). The blocks and their interfaces are denoted by 
Lk and Bk respectively. The bidirectional multiblock struc-
ture is composed of three separate parts. The active-source 
block denoted by L0 is placed in the center of the structure. 
It is assumed in the proposed model that a dipole emitter 
is placed in the homogeneous block L0 with a permittivity 
of ε r. The left and right parts of the active-source block are 
multiple stacked single blocks Lk, with the indices −(NL + 1) 
≤ k ≤ −1 and 1 ≤ k ≤ (NR + 1) respectively. The notation fol-
lows the conventional structure-modeling method for FMM 
[1]. On the whole, the structure takes the form of a finite 
multiblock structure surrounded by the left and right semi-

(a)

(b)

FIG. 1. Photonic multiblock structure with an optical-source-embedding block, and the optical field distributions for (a) a dipole 
with polarization P = (1, 0, 0) and (b) a dipole with polarization P = (0, 0, 1). The thicknesses of block #1, the cathode, block #2, the 
active block, block #3, and the anode are 70 nm, 8 nm, 31 nm, 38 nm, 157 nm, and 114 nm respectively, and their refractive indices (n 
+ jk) are 1.88, 0.191 + 3.24j, 1.71, 1.84 + 0.00272j, 1.94, and 0.129 + 3.19j, respectively.
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infinite blocks L−(NL+1) and L(NR+1).
In the proposed scheme, the thickness of the dipole-em-

bedding slab L0 is set to zero, in the sense of a limit. Even 
though the thickness of the block is zero, the permittivity of 
the block must be taken into account to define the internal 
impedance of the dipole emitter. For example, the permit-
tivity of L0 should be εr = 1 for a dipole embedded in free 
space, whereas we need to set the permittivity of L0 as εr(r0)
when the material permittivity at the point r = r0 is εr(r0). 
This is critical for matching the dipole’s internal impedance 
to that of the surrounding medium.

The optical field in the multiblock structure is repre-
sented by the Fourier modal expansions in the respective 
blocks. Here it is assumed that the complete set of the 
Bloch eigenmodes 
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 represented by the 
pseudo-Fourier series are prepared for all single blocks [1]. 
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 are the electric field and magnetic field of the 
gth positive (negative) eigenmode in the kth block Lk. Here 
the time-harmonic function exp(−jωt) is assumed, where ω 
is the angular frequency. The field distributions in the left 
and right parts of the multiblock structure are represented 
respectively by
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 are the coupling coefficients of the 
Bloch eigenmodes in the left and right finite blocks. The 
field distribution in the left and right semi-infinite blocks 

FIG. 2. Bidirectional S-matrix representation of a photonic structure with an optical-source-embedding block: (a) schematic diagram 
of the source-embedded multiblock structure and (b) bidirectional S-matrix model.

(a)

           (b)
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are explicitly given as, respectively,
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 are the transmission coefficients 
in the left and right semi-infinite blocks respectively. The 
scattering matrices (S matrices) contain complete informa-
tion about the electromagnetic characteristics of the target 
multiblock structure [1, 7]. The coupling-coefficient opera-
tors [1, 8] indicate the excitation rates of the internal Bloch 
eigenmodes. Those are essential to visualizing the optical 
field, as well as analyzing the modal spectrum of the in-
ternal optical field. The distribution of the coupling coef-
ficients can be straightforwardly interpreted as the modal 
spectrum.

In terms of the S-matrix method, the field propagation 
and distribution inside the structure is completely represent-
ed in the modal spectrum’s domain. For that, the transmis-
sion and coupling coefficients are treated in the form of ma-
trix operators and associated recurrence relations [1]. The 
recurrence relations reflect the internal multiple reflection 
and transmission processes between the individual blocks. 
The operators of the transmission coefficients for the left 
semi-infinite block 
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The conventional S matrix has not been extended to 

represent the complicated optical wave propagation in the 
optical-source-embedding structure. We propose a bidirec-
tional S-matrix algorithm for stable field propagation, for 
that problem. The proposed bidirectional S-matrix formula-
tion is schematically illustrated in Fig. 2(b). The S matrices 
of the left and right multiblocks, S(L) and S(R), are given by
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The transmission-coefficient operators in the left and 
right parts, induced by the positive input field, are denoted 
by 
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 (with the subscript n for ‘negative’) respectively. In Fig. 
2(b), the thickness of the intermediate source-embedding 
block L0 is indicated by dv. We can construct the bidirec-
tional S-matrix algorithm following the recursive ray-

tracing method [1], taking the limiting process of lim dv → 
0. The four components of the bidirectional S-matrix algo-
rithm are derived as
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More specifically, we define the internal-light-source 
operators along the positive z direction and negative z di-
rection denoted by identity matrices 
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The first term 
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through the right block, and the second term 
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is interpreted as the transmission after a single round-trip 
reflection in the zero-thickness block between the left and 
right parts. The transmission-coefficient operators for the 
internal-light-emission source are obtained in the form of 
the sum of the field components excited by 
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Also, taking into account the internal field distribution, 
the coupling-coefficient operators are given by the follow-
ing algorithm:
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Similar to the formation of Eqs. (4a) and (4b), the cou-
pling-coefficient operators of the internal field distributions 
in the left and right parts are obtained by, respectively,
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Consequently, the bidirectional S-matrix method has 
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been established. Practical application of optical sources 
requires additional modeling of a specific optical source, 
which is given by the discrete column vectors of the bidi-
rectional angular spectrum, 
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, as explained in the 
next section.

III. APERIODIC DIPOLE-RADIATION MODEL 
FOR THE FOURIER MODAL METHOD

To represent the dipole-radiation field, a proper source 
operator model, 

��

( )� �
� � �x yj k kμ ω πΔ Δ �

+� �

−� �

U
�
�

U
�
�

( )�m n y x
Q±� �⋅� ��
�

�

�m nQ± ⋅�
�

�

( )�m n y x
Q±� �⋅� ��
�

�

T
�
�

T
�
�

C
�
�

C
�
�

E �

�

 and 

��

( )� �
� � �x yj k kμ ω πΔ Δ �

+� �

−� �

U
�
�

U
�
�

( )�m n y x
Q±� �⋅� ��
�

�

�m nQ± ⋅�
�

�

( )�m n y x
Q±� �⋅� ��
�

�

T
�
�

T
�
�

C
�
�

C
�
�

E �

�

, should be designed. For this, we 
investigate the discretization of the Weyl representation 
of the Green dyadic function [9] and propose the discrete 
Weyl representation of an optical dipole-emission source 
for FMM. In the aforementioned S-matrix formulation, the 
source operators 
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 need to be specified only in the 
source-embedding block. The emitted optical field propa-
gating toward the other blocks is calculated by the bidirec-
tional S-matrix algorithm established in Section 2. Thus, our 
goal is to construct the operators of the dipole source in L0.

The optical emission in L0 is described by the inhomoge-
neous Maxwell’s equations:
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where P and M are the external polarization and magneti-
zation vectors respectively. ε 0 and μ 0 denote respectively 
the electric permittivity and magnetic permeability in free 
space. ε r is the relative permittivity of L0 and δ (r) is the 
three-dimensional Dirac delta function. The permittivity 
can be generally represented by an anisotropic tensor, but 
for convenience ε r is set to a constant here. The electric and 
magnetic dipole sources are placed at the origin (r = 0).

First, we take into account the electric dipole radiation 
in L0 by setting the magnetization vector M = 0. The dyadic 
Green function of the optical dipole is expressed by the 
Weyl representation [8],
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 are the operators gen-
erating the three-dimensional dipole field propagating in 
the positive and negative z directions respectively, and are 
given by two partial operator matrices,
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where p, q, and m are given by
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The electric and magnetic fields induced by a dipole 
source P are obtained respectively from
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The radiation power of a dipole, P = (0, 0, pez), in a ho-
mogeneous medium with refractive index 
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larger than that in free space, as
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Similarly, the magnetic and electric fields induced by the 
magnetic dipole can be obtained as
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. (10b)

In the case of a magnetic dipole, the radiation power is 
n3 times as large as that in free space,
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�
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c
ωμ μ ω

π=
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. (10c)

The power calculations shown above are rigorous, be-
cause the calculation is performed on a continuum support. 
Since the FMM is a numerical method in the spatial Fourier 
domain, we need to build up a numerical framework. The 
core of our discussion is the discretization of the Weyl rep-
resentation of the Green dyadic function. Direct discretiza-
tion results in the discrete representation
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kz,m,n. The electric fields are represented, from Eq. (9a), as
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where U0 is 
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. The Fourier coefficients of 
the x and y components of the positive and negative com-
ponents U+ and U− in Eq. (11b) are rearranged to column-
vector forms, 

��

( )� �
� � �x yj k kμ ω πΔ Δ �

+� �

−� �

U
�
�

U
�
�

( )�m n y x
Q±� �⋅� ��
�

�

�m nQ± ⋅�
�

�

( )�m n y x
Q±� �⋅� ��
�

�

T
�
�

T
�
�

C
�
�

C
�
�

E �

�

 and 

��

( )� �
� � �x yj k kμ ω πΔ Δ �

+� �

−� �

U
�
�

U
�
�

( )�m n y x
Q±� �⋅� ��
�

�

�m nQ± ⋅�
�

�

( )�m n y x
Q±� �⋅� ��
�

�

T
�
�

T
�
�

C
�
�

C
�
�

E �

�

, as



Current Optics and Photonics, Vol. 5, No. 6, December 2021602

���

�

�

�

m n y

m n x

Q
U U

Q

+

+

� �� �⋅� �� �= � �� �� �⋅� �� �

�

�

�
�

�

�� � � � ������
� �

, (12a)

���

�

�

�

m n y

m n x

Q
U U

Q

−

−

� �� �⋅� �� �= � �� �� �⋅� �� �

�

�

�
�

�

�� � � � ������
� �

, (12b)
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 is located in (m + M)(2N + 1) + 
n + N + 1, where m and n range as −M ≤ m ≤ M and −N ≤ n 
≤ N respectively. Therefore, by substituting Eqs. (12a) and 
(12b) into Eqs. (4a) and (4b) and Eqs. (5a) and (5b), we can 
obtain the modal spectra of the radiated field, 
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the modal spectra of the internal optical field, 
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, in the 
photonic structure induced by a dipole polarization source, 
as follows:

���

p nT U U= +� �
� � � � �

�� � � � � ������
� �

, (13a)

���

p nT U U= +� �
� � � � �

�� � � � � ������
� �

, (13b)

���

p nC U U= +� �
� � �� �

�� � � � � ������
� �

, (13c)

���

p nC U U= +� �
� � �� �

�� � � � � ������
� �

, (13d)

With the obtained modal spectra, the optical field distri-
bution is reconstructed according to Eqs. (1a)–(1d).

In Fig. 3, the exemplary optical field distribution is 
calculated by the aforementioned bidirectional S-matrix 
method. For simplicity, the simulation is conducted for a 
two-dimensional dipole source (N = 0), which presents the 
results of the proposed formulation more clearly. In Figs. 
3(a) and 3(b), the x-directional electric field distribution Ex 

and its intensity profile |E| in the xz plane, which are excited 
by a two-dimensional dipole source of wavelength 532 nm 
and polarization P = (1, 0, 0), are presented.

In both Figs. 3(a) and 3(b), the field profiles near z = 0 
show an abrupt high amplitude, which is considered to be 
an unphysical numerical error originated from the Gibbs 
phenomenon. The Gibbs phenomenon, associated with con-
vergence in field and structure in FMM, is a well-known 
issue [10]. However, in this case the Gibbs phenomenon is 
related to the numerical representation of the optical source.

With respect to numerical analysis, when a dipole source 
of subwavelength dimension is represented by the discrete 
angular spectrum (i.e. the discrete Weyl representation), the 
Gibbs phenomenon becomes problematic and induces sig-
nificant errors, as shown in Fig. 3. Therefore, it is important 
to develop an effective method to reduce or eliminate those 
Gibbs-induced errors in the discrete Weyl representation, 
Eq. (11b).

In terms of signal processing, to reduce the Gibbs phe-
nomenon without losing physical meaning, the specific 
window is wrapped to the angular-spectrum profile of the 
discrete Weyl representation. We choose the sigma filter 
[11], σmn, which is defined by

���
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, (14a)

and try to apply σmn to the discrete Weyl representation of 
Eq. (11b) as
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(14b)

The optical field spectra of the discrete Weyl representa-
tion refined with the sigma filter, which are comparable to 
Eqs. (12a)–(12b), read as

(a) (b)

FIG. 3. Gibbs-induced error in the field distribution obtained without the sigma operator. (a) Ex and (b) |E| in free space.
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Figure 4 compares the field profile of the z-directional 
electric field at r = (x, 0, 0) calculated from the discrete 
Weyl representation, Eqs. (12a) and (12b), to that from the 
refined Weyl representation, Eqs. (15a) and (15b). The un-
physical, highly oscillatory features in Ez, ascribed to the 
Gibbs phenomenon, are observed in Fig. 4(a), while the 
effect of the sigma filter is clearly seen in the field profile 

in Fig. 4(b), where the use of the sigma filter dampens the 
Gibbs-induced numerical errors effectively.

As presented in Fig. 5, the optical field distributions 
obtained with the sigma filter demonstrate that the Gibbs-
induced errors have been removed, and continuity in the 
field distribution is confirmed at r = (x, 0, 0), which cor-
responds to the interface B0 in Fig. 2(a). We compare three-
dimensional (3D) field distributions of a dipole source at 
r = (0, 0, 0) in free space. 

A three-dimensional perfectly matched layer (PML) [12] 
is used to model this structure, as shown in in Fig. 6(a). 
Without the sigma filter [Fig. 6(b)], the Gibbs phenomenon 
occurs across the whole xy plane (z = 0). In contrast, the 
field distribution with the sigma filter exhibits significantly 
reduced Gibbs error [Fig. 6(c)], indicating that the proposed 
discrete Weyl representation is an appropriate dipole-source 

       (a)       (b)

FIG. 4. Discrete Weyl representations of Uz (a) without the sigma filter, and (b) with the sigma filter. The sigma filter’s reduction of 
Gibbs-induced error is clearly observed in (b).

(a)                              (b)

FIG. 5. Reduction of the Gibbs-induced error in the field distribution with the sigma filter. (a) Ex and (b) |E| in free space.
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model for the FMM. As an additional example, the opti-
cal dipole radiation near a 40-nm-thick silver film placed 
at z = −200 nm [Fig. 6(d)]. is simulated with and without 
the sigma filter, and the results are compared in Figs. 6(e) 
and 6(f), verifying the proposed FMM scheme with the 
proposed discrete Weyl representation and bidirectional S-
matrix method.

IV. CONCLUSION

We have formulated the basis for FMM analysis of 
general aperiodic source-embedding photonic structures: 
the bidirectional S-matrix method with the discrete Weyl 
representation and perfectly matched layer. The proposed 
scheme can provide an FMM-based modal-analysis frame-
work for the design and analysis of advanced photonic 
structures with embedded optical sources.
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