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There is a trade-off between uniformity and diffraction efficiency in the design of diffractive optical elements.
It is caused by the inherent ill-posedness of the design problem itself. For the optimal design, the optimum
trade-off needs to be obtained. The trade-off between uniformity and diffraction efficiency in the design of
diffractive optical elements is theoretically investigated based on the Tikhonov regularization theory. A novel
scheme of an iterative Fourier transform algorithm with regularization to obtain the optimum trade-off is pro-
posed. © 2004 Optical Society of America
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1. INTRODUCTION
A fundamental objective of diffractive optics is the opti-
mal design of a diffractive optical element (DOE).1–3 A
DOE is a device that forms a target diffraction image in a
specified image plane (output plane) through diffracting
an incident optical wave in a pregiven DOE plane (input
plane). A general quadratic phase system as well as free
space can be placed between the DOE plane and the im-
age plane.4 In most cases, a DOE is used as a phase-only
element, which modulates only the phase of the incident
optical wave without disturbing the amplitude. A phase-
only element is in practice attractive for its high trans-
mission efficiency and simple fabrication.

The most important task in the design of a phase-only
DOE is to find an optimal phase profile to be given to the
optical wave by the DOE. However, the design problem
of the DOE is difficult to solve, since it is basically a non-
linear ill-posed inverse problem.5 Though mathematical
fundamentals of the DOE design have been investigated
continuously during recent decades, a complete under-
standing has not been reached yet. The origin of the dif-
ficulty is the inherent ill-posedness of the DOE design
problem. Ill-posedness means that (1) a solution does not
exist, (2) the solution may not be unique, or (3) the solu-
tion may be unstable.5,6 In the DOE design problem, it is
seen that a band-limited phase profile does not exist,
which indicates nonexistence of the solution,7,8 and many
quite different candidates for the DOE phase profile may
generate the same diffraction image.

In the DOE design, several degrees of freedom must be
adopted to well pose the design problem.7,9 The ampli-
tude and phase freedoms are essential in the DOE design
irrespective of practical design methods.7 The design
problem can be described as a phase retrieval problem of
the DOE to form a target diffraction image in the image
plane with the amplitude and phase freedoms. In the
scalar domain, the phase retrieval problems can be solved
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approximately by various numerical methods. Many ef-
ficient methods to find the phase profile of a DOE have
been studied, such as the iterative Fourier transform al-
gorithm (IFTA),9–14 the genetic algorithm, etc.15,16 The
most preferred algorithm among them is the IFTA. The
amplitude and phase freedoms were adopted in Wyrow-
ski’s IFTA scheme to overcome the stagnation effect.9

In addition, the relaxation parameter is an important
freedom for improving the performance of the IFTA, since
the relaxation parameter can control the convergence rate
of the IFTA. An example of the parametric version of the
IFTA is the input–output method.10,11 Recently the IFTA
with a variable relaxation parameter for steepest-descent
convergence was reported.12

Kotlyar et al., in particular, formulated a version of the
IFTA based on the Tikhonov regularization scheme.13

Through one of the variational methods, the Landweber
iteration method,17 the IFTA is derived from the least-
squares object functional with a regularization term. In
that scheme, the variation of the iterate is selected to
maximize the negative variation of the object functional.
Their IFTA version can be viewed as a refined generaliza-
tion of almost all historic variants of the IFTA, and it in-
cludes all key concepts of the IFTA, such as (1) param-
eterization by a relaxation parameter to control the
convergence rate, (2) extra degrees of freedom for exploit-
ing amplitude freedom outside the signal area in the im-
age plane, i.e., the noise area, and phase freedom in the
whole area of the image plane to eliminate the stagnation
effect, and (3) regularization. In particular, the concept
of regularization will be discussed in a precise manner in
this paper.

On the other hand, the quality of a DOE can be esti-
mated with several evaluation features of the generated
diffraction image, such as mean square error (MSE), dif-
fraction efficiency, and uniformity. They are defined, re-
spectively, as
2004 Optical Society of America
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where F and F0 denote the complex amplitude of the op-
tical signal and the target image, respectively, and S in-
dicates the signal area in the image plane. In particular,
the uniformity designates flatness or smoothness of the
intensity distribution of the diffraction image. In this
paper, uniform target images are considered. It is seen
that uniformity is better as its value gets smaller. The
diffraction efficiency is the ratio of the power focused on
the signal area to the total power of the incident optical
wave. The MSE as defined in Eq. (1c) is the integral of
the MSE of the resulting diffraction image with respect to
the target image. As will be shown, the conventional
IFTA is made to minimize only the MSE, since the form of
the generating functional of the conventional IFTA is just
the MSE.

Generally the minimization of the MSE through the
IFTA results in a reliable solution with fair uniformity
and diffraction efficiency. However, it is well-known that
there is a direct trade-off between uniformity and diffrac-
tion efficiency. A common understanding about the
trade-off is that lower efficiency allows more noise outside
the signal area, ensures more amplitude freedom, leads to
reduced errors, and overcomes the stagnation and im-
proves uniformity within the signal region. However,
through such an understanding, we can only get an intui-
tive explanation about the trade-off between uniformity
and diffraction efficiency and cannot obtain any clue on
the concept of the optimum trade-off. The optimum
trade-off means the minimum trade-off, which designates
the capability of obtaining the best uniformity for a spe-
cific value of diffraction efficiency. For the optimal de-
sign, the optimum trade-off needs to be obtained. The
conventional IFTA tries to minimize the MSE value, but
the minimization of only the MSE does not guarantee the
best uniformity of the diffraction image, since the math-
ematical properties of the MSE and the uniformity are so
different. Hence an elaborate innovation of the conven-
tional IFTA is necessary to minimize the trade-off,
namely, to improve uniformity for a specific goal of diffrac-
tion efficiency. The ultimate objective of the study on op-
timization techniques is surely to find a global optimum
solution, but the ill-posedness of our problem encourages
us to devise effective ways to reduce the trade-off and,
furthermore, reach the optimum trade-off.

In this paper, a novel scheme of the IFTA to minimize
the trade-off between diffraction efficiency and uniformity
is proposed. We do not guarantee that the trade-off ob-
tained by the proposed technique is optimum but will
prove that the proposed scheme is effective for improving
uniformity of the diffraction image.

This paper is organized as follows. In Section 2, as
preliminaries, the setup of an optical system with a DOE
is described, and the problem to be treated is formulated.
In Section 3, a theoretical analysis of the trade-off be-
tween uniformity and diffraction efficiency of the IFTA
scheme is considered, based on the Tikhonov regulariza-
tion theory. In Section 4, a novel IFTA scheme for mini-
mizing the trade-off is devised with use of the first-order
Tikhonov regularization theory. In Section 5, some com-
ments on practical implementation of the proposed algo-
rithm are given. In Section 6, comparisons between the
conventional and proposed IFTA schemes are made with
the aid of numerical simulations. Finally, concluding re-
marks are given in Section 7.

2. OPTICAL SYSTEM WITH A DIFFRACTIVE
OPTICAL ELEMENT
In general, since a phase-only DOE comprises a very thin
surface relief profile on a substrate, the thin-element ap-
proximation (TEA) is used for connecting the surface re-
lief profile with the transmittance of the DOE.18 In the
thin-element approximation, the phase modulation at a
spatial point is proportional to the local thickness of the
optical element at that point. Although a more real situ-
ation such as multiple internal reflections inside the DOE
can be considered with the IFTA,19 in this paper, for sim-
plicity, the thin-element approximation is assumed.

In this paper, we are concerned with the design of a
phase-only DOE placed in the system indicated in Fig. 1.
The schematic of the optical system with a DOE assumed
in this paper is presented in Fig. 1. A thin lens of focal
length f and a phase-only DOE constitute the optical sys-
tem. The DOE is placed in the DOE plane. Let the dis-
tance from the DOE plane to the lens and that from the
lens to the image plane be d1 and d2 , respectively, and let
the wavelength of the optical wave be l. The incident op-
tical wave impinges on the back side of the DOE and
passes through the DOE with its phase modified. The
modulated optical wave signal is transformed by the op-
tical system to form a diffraction image in the image
plane.

The IFTA is mainly considered in this paper. As
shown in Fig. 1, a general quadratic phase system can be
placed between the DOE plane and the image plane in the
IFTA-based design. The general quadratic phase system

Fig. 1. Schematic of a paraxial optical system with a DOE.
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is mathematically represented by the generalized Fresnel
transform or the fractional Fourier transform.20,21 The
main transform of the IFTA is extended to the fractional
Fourier transform or the generalized Fresnel transform.
Since the generalized Fresnel and fractional Fourier
transforms can be practically implemented based on the
fast Fourier transform (FFT) algorithm, the IFTA can be
easily established on a digital computer. The transform
of the optical system is described as the generalized
Fresnel transform with (x1 , y1) and (x2 , y2) denoting the
coordinates of a point in the DOE plane and the image
plane, respectively. Then, by the linear canonical trans-
form method,21 the forward Fresnel transform, denoted
by Fr(•), can be obtained:

F~x2 , y2! 5 Fr@G~x1 , y1!#

5 E
2`

` E
2`

`
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(2)

where h(x2 , y2 , x1 , y1) is the propagator of the forward
Fresnel transform and takes the form
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The inverse Fresnel transform, denoted by Fr21@ • #, can
be expressed as
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where h21(x1 , y1 , x2 , y2) is the propagator of the in-
verse Fresnel transform and takes the form
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It is noted that when the focal length f of the lens is infi-
nite, the propagator of the generalized Fresnel transform
leads to the free-space propagator and that when d1 and
d2 are equal to f, the generalized Fresnel transform be-
comes a Fourier transform realized by a thin lens.

With the unitary condition satisfied,4 the forward and
inverse Fresnel transforms can be implemented based on
the FFT. The size of the computation grid is set to N
3 N, where N is commonly 2m for the FFT. The forward
Fresnel transform is rewritten in the form of a Fourier
transform of the signal G(x1 , y1) multiplied by the
chirped phase function:
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The instantaneous spatial angular frequency of the qua-
dratic chirped phase function near the aperture edge in
one direction parallel to the x1 axis is
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By the Nyquist sampling theory, the sampling spatial an-
gular frequency vS is determined:

vS . 2uvM~x1!u 5 U 4p~1 2 d2/f !x1

lF ~d1 1 d2! 2
d1d2

f GU , (8)

where x1 is assumed to be positive and viewed as the dis-
tance between the origin and the point (x1 , 0). With Dx1
and Lx1

denoting, respectively, the spatial sampling inter-
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val in the DOE plane and the length of the computation
grid along the x1 direction, the following inequality
should hold for Dx1 :

Dx1 5
2p

vS
, Ul@~d1 1 d2! 2 d1d2 /f #

2~1 2 d2 /f !x1
U. (9)

With the aid of the relation Lx1
5 NDx1 , and by setting

x1 5 R as the aperture radius of the DOE, we can obtain
the relation between the upper bound of the dimension of
the DOE plane, the aperture radius of the DOE, and the
size N of the computation grid, that is, the number of
sampling points along the horizontal or longitudinal di-
rection:

Lx1
R , Ul~d1 1 d2 2 d1d2 /f !

2~1 2 d2 /f !
UN, R <

Lx1

2
.

(10)

The discretization of the inverse Fresnel transform need
not be considered seriously, since the chirped phase term
will be canceled out by the conjugate chirped phase term
outside the integrals of Eq. (6).

In the following sections, the main topic of reducing the
trade-off between uniformity and diffraction efficiency is
investigated in a precise manner. We approach the prob-
lem from a theoretical point of view rather than a practi-
cal point of view. We concentrate on the IFTA itself
rather than practical design issues22 of DOEs. Therefore
the issue of phase quantization is not touched. The con-
struction of the continuous phase profile is considered in
this paper.

3. ANALYSIS OF TRADE-OFF BETWEEN
UNIFORMITY AND DIFFRACTION
EFFICIENCY
In practice, the balance of uniformity and diffraction effi-
ciency can be controlled by a simple scaling up or down of
the signal distribution in the area outside the signal area,
viz., the noise area, at the step of updating the amplitude
distribution in the image plane during the IFTA process.
If the scaling factor is larger than 1, the amplitude free-
dom increases, and uniformity is improved but diffraction
efficiency decreases; whereas, if the constant scaling fac-
tor is smaller than 1, the amplitude freedom decreases, so
uniformity is degraded but diffraction efficiency is im-
proved.

In this section, a theoretical analysis of the trade-off be-
tween uniformity and diffraction efficiency is contem-
plated based on the Tikhonov regularization theory,6,13,17

which is a basis for the discussion in Section 4. To ana-
lyze the relationship between uniformity and diffraction
efficiency, we build an object functional to be minimized
with two distinct regularization parameters aS and aN :

J~F ! 5 EE
2`

`

uDSuFu 2 F0u2dx2dy2
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uFu2dx2dy2 1 aNEE

N
uFu2dx2dy2 ,

(11)
where DS is the area-limiting operator defined as

DSF 5 H F for ~x2 , y2! P S

0 for ~x2 , y2! ¹ S
, (12)

F is the calculated complex diffraction image, F0 is the
target image, which is real, and S and N denote the signal
area and the noise area, respectively. Equation (11) can
be viewed as a Tikhonov functional parameterized by two
regularization parameters. It should be noted that en-
ergy conservation is assumed in the design of DOEs:
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`
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N
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`
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We can derive an iterative algorithm to minimize the
functional (11) by using a variational method, the Land-
weber iteration method.17 The variation of the func-
tional (11) is given by

dJ~F ! 5 2EE
2`

`

Re$@2uF0uexp~ic! 1 DSF 1 DSaSF

1 ~1 2 DS!aNF#dF* %dx2dy2 , (14)

where Re(•) is the real part of the complex number. Ac-
cording to the Landweber iteration method, we should se-
lect the variation of F to generate the maximum negative
variation of dJ; then dF takes the form

dF 5 F̄ 2 F 5 2t@DS~1 1 aS!F 1 ~1 2 DS!aNF

2 F0 exp~ jc!#, (15)

where t is the relaxation parameter and c is the phase
distribution of F. Hence the nth iterate modified in the
image plane is obtained:

F̄n 5 Fn 2 t@DS~1 1 aS!Fn 1 ~1 2 DS!aNFn

2 F0 exp~ jcn!#. (16)

To satisfy the constraints in the DOE plane, we obtain the
(n 1 1)th diffracted field Fn11 by applying the error-
reduction operator to Eq. (16):

Fn11 5 Fr DDOE Fr21~F̄n!, (17)

where the operator DDOE , which expresses the surface
boundary condition in the DOE plane, is given by

DDOEG 5 H A0 exp@ j arg~G !# for ~x1 , y1! P V

0 for ~x1 , y1! ¹ V
,

(18)

in which V denotes the encoding area in the DOE plane
and arg(G) is the phase function of the complex function
G. Equations (16) and (17) describe a generalized IFTA
for the DOE design. Equation (16) can be rewritten as
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F̄n 5 H tF0 exp~ jcn! 1 ~1 2 t 2 taS!Fn for ~x2 , y2! P S

~1 2 taN!Fn for ~x2 , y2! ¹ S
. (19)
Even if Eq. (19) is divided by a constant (1 2 taS), the
behavior of the IFTA does not change, since the IFTA is
invariant for constant scaling of the signal distribution in
the whole image plane. Therefore we obtain the modified
form of Eq. (19):

F̄n

5 H t8F0 exp~ jcn! 1 ~1 2 t8!Fn for ~x2 , y2! P S

bFn for ~x2 , y2! ¹ S
,

(20)

where

t8 5 1 2 taS , (21)

b 5
1 2 taN

1 2 taS
. (22)

If the two regularization parameters are equal (aS
5 aN), we can see that b 5 1 and that Eq. (20) leads to
the versions of the IFTA of Kotlyar et al.13 and
Wyrowski.9 As stated above, the practical heuristic to
improve uniformity at the cost of lower diffraction effi-
ciency is to make b slightly larger than 1. Conversely, if
b is smaller than 1, diffraction efficiency is improved but
uniformity is degraded.

We can see the difference between the two conditions
b . 1 and b , 1 in the structure of the object functional
(11). Let us consider the object functional (11) again.
We can see that the functional is the sum of three inte-
grals, which can be viewed, respectively, as the MSE esti-
mated over the signal area, the total energy allocated to
the signal area weighted by aS , and the total energy al-
located to the noise area weighted by aN . It is confirmed
that the conditions b . 1 and b , 1 correspond to aS
. aN and aN . aS , respectively. In the former case,
the IFTA will try to further allocate signal energy to the
noise area to minimize the functional (11), which means
decreasing diffraction efficiency. On the contrary, in the
latter case, the IFTA will try to allocate signal energy to
the signal area to minimize the functional (11), which
means increasing diffraction efficiency. Next, the object
functional (11) can be rearranged with a little manipula-
tion as

J~F ! 5 ~aS 1 1 !EE
S
S uFu 2

F0

aS 1 1 D 2

dx2dy2

1 aNEE
N
uFu2dx2dy2 1

aS

aS 1 1
EE

S
F0

2dx2dy2 .

(23)
The newly arranged functional (23) is the sum of three in-
tegrals. The first term is considered the MSE of the sig-
nal distribution F with respect to the target signal down-
scaled by (aS 1 1)21. The second term is the total
energy allocated to the noise area. And the third integral
is the total energy of the incident optical wave multiplied
by a constant aS (aS 1 1)21. We observe that the
weight factor of the first integral is aS 1 1. Therefore as
aS increases, the weight factor of the MSE between the
signal distribution and the scaled target signal function
increases and the IFTA makes an exertion to minimize
the first integral further. It is comprehensible that the
minimization of this MSE will lead to the improvement of
uniformity of the signal distribution in the signal area,
since an even distribution of the signal will minimize the
MSE mathematically. The increase of the amount of the
energy allocated to the noise area induces the decrease in
diffraction efficiency.

However, it is known that the minimization of MSE
alone does not guarantee the best uniformity of the dif-
fraction signal, since the functional structures of MSE
and uniformity are correlated weakly. Observing the
functional structures of MSE and uniformity defined
above, we can think that the MSE in the case in which all
the samples of F except one exactly match the target val-
ues and the excluded sample has a relatively big differ-
ence from the target value can be smaller than that of the
case in which all the samples of F have a relatively small
difference from the corresponding target values. Then
the uniformity of the former case is worse than that of the
latter case. Conversely, it is easily conceived that the op-
timization of only the uniformity will not guarantee a de-
crease in the MSE. That is, uniformity and MSE are
only weakly correlated. Recently, based on a similar
analysis, a regularization technique, the so-called adap-
tive regularization parameter distribution (ARPD), was
devised to strongly correlate uniformity with MSE to al-
leviate the trade-off between uniformity and diffraction
efficiency.14 The ARPD aS(x2 , y2) is defined as

aS~x2 , y2! 5
2g

p
tan21F uF~x2 , y2!u 2 F0~x2 , y2!

F0~x2 , y2!
G

1 g 2 1, (24)

where g is a tuning parameter. The ARPD of Eq. (24) is
substituted into the IFTA scheme (19) and results in a
modified form of the IFTA:
F̄n 5 H tF0 exp~ jcn! 1 X1 2 t 2 tH 2g

p
tan21F uF~x, y !u 2 F0~x, y !

F0~x, y !
G 1 g 2 1J CFn for ~x, y ! P S

Fn for ~x, y ! ¹ S

. (25)
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With use of the IFTA scheme with the ARPD, uniformity
can be improved more than with the conventional IFTA
for the same diffraction efficiency.14 However, we make
an effort to refine the regularized scheme for the IFTA
based on the first-order Tikhonov regularization theory so
as to reduce the trade-off more.

4. ITERATIVE FOURIER TRANSFORM
ALGORITHM WITH THE ADAPTIVE
REGULARIZATION PARAMETER
DISTRIBUTION AND THE FIRST-ORDER
TIKHONOV REGULARIZATION
Our objective in this paper is to maximally mitigate the
disadvantage of the trade-off between uniformity and dif-
fraction efficiency in the IFTA-based design of DOEs. In
this section, based on the first-order Tikhonov regulariza-
tion theory and the analysis of the trade-off of Section 3, a
novel scheme of the IFTA to reduce the trade-off more is
proposed. The validity of the proposed algorithm will be
proved with numerical simulations in Section 5.

First, we contrive a new object functional to generate
the IFTA with the aid of the first-order Tikhonov regular-
ization theory. It should be recalled that the object func-
tional (11) generates the IFTA scheme through the varia-
tion method. In the same manner, we will derive an
iterative algorithm from the proposed object functional.
As stated in Section 3, the minimization of only the MSE
does not guarantee the best uniformity of the diffraction
signal in the conventional IFTA scheme. However, we
think that if an appropriate functional form for the mea-
sure of uniformity exists, it is possible to devise a new
IFTA to directly optimize the uniformity during the itera-
tion process. Hence we need a direct measure of unifor-
mity having an analytic form that can be manipulated
easily in the discrete domain and combined with the ob-
ject functional. Furthermore, it is desirable that the
measure be independent of the diffraction efficiency.
Fortunately, we can get such a measure of uniformity
from the generalization of the objective functional (11)
with the help of the first-order Tikhonov regularization
theory. At this stage, we move consideration of the
ARPD technique back to the end of this section. Hence
let us assume that the regularization parameter aS in Eq.
(11) is a constant and not a distribution.

The sum of the second and third integrals of Eq. (11)
can be viewed as a W2

0 Sobolev space norm (whose sub-
script and superscript stand for space dimension and de-
rivative order, respectively), seen in the conventional
Tikhonov regularization scheme except that here it has
two distinct regularization parameters. Let this form be
referred to as the zeroth Tikhonov regularization func-
tional. As a course of mathematical generalization to
higher-order regularization, we can build an objective
functional with a W2

1 Sobolev space norm with three dis-
tinct regularization parameters:

J~F ! 5 EE
2`

`

uDSuFu 2 F0u2dx2dy2 1 aSEE
S
uFu2dx2dy2

1 aNEE
N
uFu2dx2dy2 1 aDEE

S
@~]x2uFu!2

1 ~]y2uFu!2#dx2dy2 . (26)
The proposed functional (26) is made by adding the inte-
gral of the square of the first-order partial derivative
terms of the signal amplitude uFu through the third regu-
larization parameter aD to the integrand of the second in-
tegral of the functional (11). The integrand of the addi-
tional integral is independent of the absolute magnitude
distribution of the signal uFu but is determined by the de-
rivative of the magnitude distribution of the signal. Its
integrand, DS@(]x2uFu)2 1 (]y2uFu)2#, is considered a di-
rect and sensitive measure of the roughness of the two-
dimensional signal amplitude distribution uFu in the sig-
nal area of the image plane. We can see that a critical
point is the dependency on diffraction efficiency of the
first integral and the newly added fourth integral. The
integrand of the additional fourth integral is almost inde-
pendent of the ratio of the assigned energy between the
signal area and the noise area, i.e., diffraction efficiency.
Hence the fourth integral of Eq. (26) is also independent
of the diffraction efficiency. On the contrary, the first in-
tegral of Eq. (26), MSE, is directly dependent on the ratio
of the assigned energy between the signal area and the
noise area and can be regarded as only an indirect mea-
sure of the roughness of the signal amplitude distribu-
tion. Therefore we can expect that the fourth term of Eq.
(26) will improve uniformity without considerable loss of
diffraction efficiency, since there is no dependence be-
tween the proposed measure of uniformity [the fourth
term of Eq. (26)] and the measure of diffraction efficiency
[the second term of Eq. (26)]. The regularization param-
eters aS , aN , and aD of Eq. (26) can be used to balance
uniformity and diffraction efficiency. As a result, we
strongly correlate the measure of uniformity with the ob-
ject functional to be minimized.

The inherent ill-posedness of the phase retrieval prob-
lem raises the possibility that there exist several candi-
date solutions of the phase profile of the DOE showing the
same diffraction efficiency but different uniformity. It is
desirable to obtain one having the best uniformity among
them, viz., the optimum trade-off. The IFTA derived
from the proposed objective functional (26) is expected to
produce a solution with the desired properties. Further-
more, after deriving a stable iterative algorithm gener-
ated from the functional (26), we will combine the ARPD
technique with the established algorithm. To construct a
stable iterative process to minimize Eq. (26), we apply the
Landweber iteration method to Eq. (26). Let us rewrite
Eq. (26) as

J~F ! 5 T~F ! 1 aDEE
S
@~]x2uFu!2 1 ~]y2uFu!2#dx2dy2 ,

(27)

where T(F) denotes the sum of the first, second, and third
integrals of Eq. (26). First, the variation of Eq. (27)
should be found. This takes the form

dJ~F ! 5 J~F 1 dF ! 2 J~F !

5 dT~F ! 1 aDEE
S
@~]xuF 1 dFu!2

1 ~]yuF 1 dFu!2# 2 @~]xuFu!2 1 ~]yuFu!2#dxdy,

(28)
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where dT(F) has already been derived in Section 3 in the
form

dT~F ! 5 2EE
2`

`

Re$@2F0 exp~ic! 1 DSF 1 DSaSF

1 ~1 2 DS!aNF#dF* %dxdy. (29)

In Eqs. (28) and (29) and also in the following Eqs. (30)–
(32), we use the notation of x and y instead of x2 and y2,
respectively, for simplicity. With the assumption of
phase conservation of the signal to the variation opera-
tion, the second term of the integrand of Eq. (28) is ma-
nipulated as follows:

~]xuF 1 dFu!2 1 ~]yuF 1 dFu!2 2 ~]xuFu!2 2 ~]yuFu!2

5 ~]xuFu 1 ]xudFu!2 1 ~]yuFuy 1 ]yudFuy!2 2 ~]xuFu!2

2 ~]yuFu!2

5 2~]xuFu]xudFu 1 ]yuFu]yudFu!. (30)

We proceed to calculate the second integral of Eq. (28)
with the aid of Eq. (30) by the following manipulation:

E E
S
@~]xuF 1 dFu!2 1 ~]yuF 1 dFu!2# 2 @~]xuFu!2

1 ~]yuFu!2#dxdy

5 EE
S
2~]xuFu]xudFu 1 ]yuFu]yudFu!dxdy

5 2EE
S
]xuFu]xudFudxdy 1 2EE

S
]xuFu]xudFudxdy

5 E
Sy

H @2~]xuFu!udFu#2]Sx

1]Sx 2 2E
Sx

~]xxuFu!udFsudxJ dy

1 E
Sx

0 H @2~]yuFu!udFu#2]Sy

1]Sy

2 2E
Sy

~]yyuFu!udFudyJ dx

5 22EE
S
~]xxuFu 1 ]yyuFu!udFudxdy

5 22EE
S
¹2uFuexp~ic!exp~2ic!udFudxdy

5 22EE
S
¹2uFuexp~ic!dF* dxdy

5 22EE
S

Re@¹2uFuexp~ic!dF* #dxdy, (31)
where it is assumed that both ]xuFu and ]yuFu are equal to
0 at the boundary of the signal area, ]S. In Section 5, it
will be further explained that this boundary condition is
used to preserve the edge of the signal distribution and
will be implemented numerically. Combining Eqs. (29)
and (31) leads to the following variation of Eq. (27):

dJ~F ! 5 2EE
2`

`

Re$@2F0 exp~ic! 1 DSF 1 DSaSF

1 ~1 2 DS!aNF

2 DSaD¹2uFuexp~ic!#dF* %dxdy. (32)

According to the Landweber iteration method, the varia-
tion of F to generate the maximum negative variation of
dJ is selected; then dF takes the form

dF 5 F̄ 2 F

5 2t@DS~1 1 aS!F 1 ~1 2 DS!aNF 2 F0

3 exp~ jc! 2 DSaD¹2uFuexp~ic!#, (33)

where t is the relaxation parameter and c is the phase
distribution of F. Hence the nth iterate modified in the
image plane is obtained:

F̄n 5 Fn 2 t@DS~1 1 aS!Fn 1 ~1 2 DS!aNFn 2 F0

3 exp~ jcn! 2 DSaD¹2uFnuexp~icn!#. (34)

To satisfy the constraints in the DOE plane, we obtain the
(n 1 1)th diffracted field Fn11 by applying the error-
reduction operation to Eq. (34):

Fn11 5 Fr DDOE Fr21~F̄n!. (35)

Then Eq. (34) can be rewritten as
F̄n 5 H tF0 exp~ jcn! 1 ~1 2 t 2 taS!Fn 1 taD¹2uFnuexp~icn! for ~x2 , y2! P S,

~1 2 taN!Fn for ~x2 , y2! ¹ S
, (36)

where it is noted that the phase value of the Laplacian is equal to that of the signal, according to the phase conservation
assumption. Equations (35) and (36) describe a novel IFTA for the design of DOEs.

We can refine the obtained IFTA scheme (36) further by substituting the ARPD aS(x2 , y2) into Eq. (36) along the same
line as that described in Section 3. The obtained algorithm takes the form

F̄n 5 5 tF0 exp~ jcn! 1 X1 2 t 2 tH 2g

p
tan21F uF~x2 , y2!u 2 F0~x2 , y2!

F0~x2 , y2!
G 1 g 2 1J CFn

1 taD¹2uFnuexp~icn! for ~x2 , y2! P S

~1 2 taN!Fn for ~x2 , y2! ¹ S

. (37)
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5. NUMERICAL IMPLEMENTATION
For computation, a finite-difference representation of Eq.
(36) is obtained. First, the finite-difference representa-
tion of the Laplacian of the signal amplitude uFu takes the
form

~¹2uFnu!~k, l ! 5
1

D2
@ uFn~k 1 1, l !u 1 uFn~k, l 1 1 !u

1 uFn~k 2 1, l !u

1 uFn~k, l 2 1 !u 2 4uFn~k, l !u#,

k, l 5 0, 1, 2,..., N, (38)

where D is the spatial sampling interval and (k, l) is the
index pair of the computation grid. In the derivation
shown in Eq. (31), it is assumed that both ]xuFu and ]yuFu
are equal to 0 at the boundary of the signal area, ]S.
This constraint is used to conserve the sharpness of the
boundary of the signal area in a practical implementa-
tion. In particular, for practical calculation of the La-
placian at a point (k, l) on the boundary of the signal
area, Fn(k, l) is in the signal area, but one more sample
among the signal samples Fn(s, t) for four points, (s, t)
5 (k 1 1, l), (k 2 1, l), (k, l 1 1), and (k, l 1 1), may

be outside the signal area. In this case, the value of the
signal Fn(k, l) replaces Fn(s, t) in Eq. (38). For ex-
ample, the Laplacian of the signal at the point (k, l) in
Fig. 2 is calculated by the equation

~¹2uFnu!~k, l ! 5
1

D2
@ uFn~k, l !u 1 uFn~k, l 1 1 !u

1 uFn~k, l !u

1 uFn~k, l 2 1 !u 2 4uFn~k, l !u#,

(39)

where the value of the signal Fn(k, l) replaces Fn(k, l
2 1) and Fn(k 1 1, l) at the same time. The replace-
ment operation permits the boundary condition used in
the manipulation (31) to be satisfied. We can interpret
the practical role of the Laplacian itself as a local averag-
ing operation as perceived in the structure of the finite-
difference representation of the Laplacian in Eq. (38).
The calculation of the Laplacian of the signal is not de-
fined in the noise area, as seen in Eq. (37). Hence the La-
placian acts to improve smoothness, i.e., uniformity, of the
signal distribution in the signal area only and does not
concern itself with any feature in the noise area. In ad-

F̄n~k, l ! 5 5
tF0~k, l !exp@ jcn~k, l !# 1 ~1 2 t 2

1 taD

1

D2
[uFn~k, l !u 1 uFn~k, l 1 1

~1 2 taN!Fn~k, l !

Fn11 5 Fr DDOE Fr21~F̄n!.
dition, the replacement operation prevents local averag-
ing over the boundary between the signal area and the
noise area and conserves the edge discontinuity of the dif-
fraction image in the image plane. Substituting Eq. (38)
into Eq. (36), we have the finite-difference representation
of the iterative algorithm:

The generalized Fresnel transform Fr(•) can be efficiently
implemented by use of the FFT algorithm over the dis-
crete domain. If the ARPD aS(x2(k), y2(l)) is substi-
tuted into the iterative algorithm (40), we have a discrete
representation of the iterative algorithm (37). In our
scheme, since appropriate regularization parameters can-
not be determined a priori, it is necessary to search for
the optimal regularization parameters.

6. NUMERICAL SIMULATIONS
In this section, the validity of the proposed IFTA scheme
is proved with several numerical simulations. We com-
pare the improvement of the trade-off between uniformity
and diffraction efficiency of the resulting diffraction im-
age of the proposed IFTA with that of the conventional
IFTA. The obtained values of the quality factors such as
uniformity and diffraction efficiency are significantly in-
fluenced by several factors, such as the initial phase pro-
file of the DOE, the size of the computation grid, the rela-
tive size of the DOE aperture to the whole computation
grid, the structure of the intermediate optical system, the

S!Fn~k, l ! for ~x2~k !, y2~l)) P S

uFn~k, l !u 1 uFn~k, l 2 1 !u 2 4uFn~k, l !u]exp@icn~k, l !#

for ~x2~k !, y2~l !! ¹ S

,

(40)

Fig. 2. Computation grid used for the DOE design. The signal
area is equal to the target image of nonzero magnitude. Three
regularization parameters are indicated in the corresponding re-
gions.
ta

!u 1
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value of the relaxation parameter, and the target image
itself. That is to say, the results of the IFTA are strongly
dependent on the problem itself. The effects of those fac-
tors on the results of the IFTA are well understood.

Concentrating on the role of the regularization tech-
nique developed in this paper, we set all the simulation
conditions and circumstances to be the same except those
related to the regularization. In particular, the relative
size of the DOE aperture to the whole computation grid is
considered in this section together with the effect of the
regularization. Usually, for beam-shaping problems, the
aperture of the DOE should be imbedded on at least a
double-sized computation grid,22 and the area padded by
zeros in the DOE domain should be set up large enough to
realize the physical situation properly. Freedom in the
DOE plane cannot be fully used in that case. On the
other hand, for the beam-splitting problem, the aperture
of the DOE fills almost the whole computation grid.
Then almost full freedom is available in the DOE plane.
Here we examine two DOE design problems. The one
does use the almost full freedom of the DOE plane, and
the other does not. For convenience, let the former prob-
lem be referred to as design B and the latter referred to as
design A. It is more difficult to obtain fair uniformity of
the diffraction image at a certain level of diffraction effi-
ciency in the case of design B than in the case of design A,
since the optimization circumstance of design B is coarser
that of design A.

For simulations, the computation grid size is taken as
128 3 128. Let the wavelength l, the distances d1 and
d2 , and the focal length f for the generalized Fresnel
transform be 633 nm, 1 m, 2 m, and 1 m, respectively.
The radius of the DOE is taken as 1.5 mm. The sizes of
the DOE planes are set to 3 mm 3 3 mm and 3.6 mm
3 3.6 mm, respectively, for each case. The target image
is selected as a rectangular pattern. A normal incident
optical wave is taken as the incident plane wave. The
initial phase profile of the DOE is taken as quadratic.
For simplicity, it is assumed that in the expression for
aD /D2 of Eqs. (40), the term D is set to 1 and the regular-
ization parameter aN and the relaxation parameter t are
set to 0 and 1, respectively.

In the simulation, the trade-off between uniformity and
diffraction efficiency of the resulting diffraction images
obtained by the four types of the IFTA are compared.
The first IFTA is the conventional IFTA of the form of Eq.
(36) with aD equal to 0. By adjusting the value of the
regularization parameter aS , we can control uniformity
and diffraction efficiency. As the value of 1/(1 2 aS) [see
Eq. (22)] increases, the uniformity improves and the dif-
fraction efficiency worsens. The second type is the IFTA
with the ARPD, as represented by Eq. (25). In this
scheme, uniformity and diffraction efficiency can be con-
trolled by the tuning parameter g. As the value of 1/(2
2 l) increases, the uniformity improves and the diffrac-
tion efficiency worsens. The third type is the IFTA with
only the first Tikhonov regularization, as given by Eq.
(36). The only difference between the first and the third
type of the IFTA is the Laplacian of the signal amplitude
multiplied by the regularization aD . The first-order
regularization term is not related to the diffraction effi-
ciency. In the same manner as that for the first type, the
balance between uniformity and diffraction efficiency can
be adjusted by the change of the regularization parameter
aS . The fourth type is the IFTA with both the ARPD and
the first-order Tikhonov regularization. In the case of
the fourth type, the balance between uniformity and dif-
fraction efficiency is adjusted by the tuning parameter g
in the same way as that for the second type.

The trade-off curves obtained through 200 iterations of
the four types of IFTA with the regularization parameter
aD equal to 0.2 are presented in Figs. 3(a) and 3(b) for de-
signs A and B, respectively. Since the regularization pa-
rameter aD cannot be determined a priori, the value 0.2
of aD was searched to improve uniformity and confirm
stability of the IFTA for all cases concerned. The trade-
off curve indicates the change in the obtained uniformity
with the change in the obtained diffraction efficiency
through the adjusting process explained above. Seeing
the trade-off curves, we can compare the obtainable uni-
formity for a goal of diffraction efficiency of the four types

Fig. 3. Comparison of the trade-off curves of the four types of
IFTA: conventional IFTA, IFTA with the ARPD, IFTA with the
first-order Tikhonov regularization, and IFTA with the ARPD
and the first-order Tikhonov regularization for (a) design A with
full freedom in the DOE plane and (b) design B with decreased
freedom. For a specific value of diffraction efficiency, the ob-
tained uniformity is different for each case. The lowest value of
uniformity indicates the best solution.
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Fig. 4. Comparative illustration of the design results with use of the conventional IFTA and the proposed IFTA with the ARPD and the
first-order Tikhonov regularization in the case of design A with full freedom in the DOE plane. (a) Intensity distribution of the resulting
diffraction image and (b) phase profile of the DOE obtained by the conventional IFTA. (c) Intensity distribution of the resulting dif-
fraction image and (d) phase profile of the DOE obtained by the proposed IFTA with the ARPD and the first-order Tikhonov regulariza-
tion. For both IFTAs, the iteration number is 200.
of IFTA. In this paper, the IFTA giving the lowest uni-
formity for a specific value of diffraction efficiency is re-
garded as the best one. Comparing the four trade-off
curves in Fig. 3, we can see that the performance of the
fourth type of IFTA, i.e., IFTA with both the ARPD and
the first Tikhonov regularization, is surely preeminent in
the range below 92% diffraction efficiency and 91% dif-
fraction efficiency for the cases of designs A and B, respec-
tively. In these regions, the second and third types of
IFTA compete with each other, while the four IFTAs com-
pete for the best performance in the range above 92% and
91% of diffraction efficiency for the cases of designs A and
B, respectively. Toward the upper regions, the difference
among the trade-off curves becomes smaller. In the case
of design B, the difference among the values of uniformity
of the four types of IFTA is indistinguishable, as seen in
Fig. 3(b). From this observation, we can conjecture that
the maintenance of the amplitude freedom outside the
signal area in the image plane is a necessary condition for
the devised regularization technique to demonstrate its
effectiveness.

Comparisons between the results of the conventional
and proposed IFTA schemes are illustrated in Figs. 4 and
5. In case of design A, the intensity distribution of the
diffraction image and the phase profile of the DOE ob-
tained by using the first type of conventional IFTA are
shown in Figs. 4(a) and 4(b), respectively. The corre-
sponding results obtained by the proposed IFTA with the
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ARPD and the first-order Tikhonov regularization are
presented in Figs. 4(c) and 4(d). To illustrate the de-
tailed differences between the obtained phase profiles
precisely, contour maps of the phase profiles are dis-
played. Comparing the diffraction images in Figs. 4(a)
and 4(c), we can see that the uniformity of the diffraction
image designed by the proposed algorithm (0.0426) is su-
perior to that designed by the conventional algorithm
(0.0916) with the same diffraction efficiency (92%).

On the other hand, in the case of design B, because of
lack of freedom in the DOE plane, it is more difficult to
obtain fair uniformity of the diffraction image than in the
case of the design for the same diffraction efficiency.
However, as seen in Fig. 3(b), the proposed IFTA with
regularization is effective in the improvement of unifor-
mity in such a coarse circumstance as that of design B.
The intensity distribution of the diffraction image and the
phase profile of the DOE obtained by using the first type
of conventional IFTA are shown in Figs. 5(a) and 5(b), re-
spectively. The corresponding results obtained by the
proposed IFTA are shown in Figs. 5(c) and 5(d). The uni-
formity of the diffraction image obtained by the proposed
algorithm (0.09) is better than that obtained by the con-
ventional algorithm (0.13) with almost the same diffrac-
tion efficiency (89%).

Next, we show the validity of the claim mentioned in
Section 4 that the first-order Tikhonov regularization
term is almost independent of the diffraction efficiency, so
that, as the regularization parameter aD of the regular-
ization term increases, the uniformity improves without
considerable loss of diffraction efficiency. We illustrate
only the case of design A, since similar results are ob-
Fig. 5. Same as Fig. 4 but for the case of design B with decreased freedom in the DOE plane.
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served in the case of design B. Figures 6(a) and 6(b)
show, respectively, the variations of the value of unifor-
mity and of the diffraction efficiency of the diffraction im-
age obtained after 200 iterations of the third and fourth
types of IFTA as the regularization parameter aD changes
from 0 to 2, where the values of aS and t are tuned to re-
sult in a diffraction efficiency of approximately 92%. As
indicated in Fig. 6(a), the first type of IFTA (conventional
IFTA) and the second type of IFTA (with the ARPD) (aD
5 0) yield uniformity values of 0.092 and 0.054, respec-
tively. When aD 5 0.2, the uniformity of both IFTAs
reaches the values of 0.058 and 0.031, respectively, but
the decrease in the diffraction efficiency is less than 0.3%
for both cases. The IFTA with the ARPD (the second
type) must reduce a considerable amount of diffraction ef-
ficiency to improve uniformity, as seen in Fig. 3(a). On
the contrary, it is noteworthy that the first-order
Tikhonov regularization can improve uniformity without
considerable loss of diffraction efficiency.

Fig. 6. Comparison of the changes in (a) uniformity and (b) dif-
fraction efficiency for several values of the regularization param-
eter aD (in the range 0–0.2) with use of the IFTA with the first-
order Tikhonov regularization and of the IFTA with the ARPD
and the first-order Tikhonov regularization in the case of design
A with full freedom in the DOE plane.
7. CONCLUSIONS
In conclusion, based on the Tikhonov regularization
theory, we investigated the trade-off between uniformity
and diffraction efficiency in the IFTA-based design of
DOEs. We proposed a novel IFTA scheme with the com-
bination of two effective regularization techniques: the
ARPD and the first-order Tikhonov regularization to
minimize the trade-off. The main idea of the proposed
method is to correlate the object functional with the uni-
formity strongly. For this, we devised the combination of
the ARPD and the first-order Tikhonov regularization.
We substantiated the validity of the proposed algorithm
theoretically and numerically. It was shown that the am-
plitude freedom outside the signal area is necessary for
the devised regularization technique to be effective. It
was confirmed that the combination of the ARPD and the
first-order Tikhonov regularization is a reliable strategy
to approach the optimum trade-off.
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