IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 11, NOVEMBER 2004

1833

Stable Threshold Voltage Extraction Using
Tikhonov’s Regularization Theory

Woo Young Choi, Hwi Kim, Byoungho Lee, Senior Member, IEEE, Jong Duk Lee, Member, IEEE, and
Byung-Gook Park, Member, IEEE

Abstract—We propose a new threshold voltage extraction with
stability based on Tikhonov’s regularization theory. It suppresses
the instability of the transconductance change method and gives
mathematically exact solution. Following the mathematical deriva-
tion, we convert the procedure into the MATLAB programming
for users’ convenience. Finally, the proposed method extracts the
threshold voltage close to the physically meaningful one which
means the gate-to-source voltage where ¢, = 2¢; + Vsg. To
confirm the proposed one, we compare it with others such as the
linear extraction and the normalized mutual integral difference
method. It was found that the proposed one extracted the physi-
cally meaningful threshold voltage very closely. Moreover, it is also
observed that there is a high correlation between the proposed
and the normalized mutual integral difference method.

Index Terms—Extraction, regularization, threshold voltage,
transconductance change method.

1. INTRODUCTION

HRESHOLD voltage (Vry) is one of the most important

parameters for MOSFET analysis. For example, phys-
ically meaningful threshold voltage extraction will help the
SPICE compact modeling to emulate real device character-
istics precisely, which will save the time and effort required
for system design. Here, the physically meaningful threshold
voltage is defined as the gate-to-source voltage (Vgs) at which
the surface potential (¢;) is nearly 2¢; + Vs [1]. ¢ ¢ and Vsp
represent the difference between intrinsic Fermi potential and
Fermi potential and the substrate bias, respectively.

Therefore, there have been many threshold voltage extraction
methods proposed to extract a physically meaningful one from
measured electrical characteristics: the constant current method,
the linear extraction method, the ratio method, and the transcon-
ductance change method [2], [3]. However, each of them has
some disadvantages. The constant current method suffers from
the arbitrariness in constant current choice. The linear extraction
method is strongly dependent not only on the series resistance
but also on the mobility degradation. The ratio method has a de-
merit of failure in line interception.
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It has been widely known that only the transconductance
change method can yield a result which approaches the phys-
ically meaningful threshold voltage and that eliminates the
effects of the interface state, the mobility degradation, and the
parasitic resistance [4]-[6]. Thus, it becomes more important
as the device is scaled down to nanoscale region. Recently,
it has also been reported that the transconductance change
method reflects the volume inversion behavior of double-gate
MOSFETs well [7], [8]. It defines the threshold voltage as the
gate-to-source voltage at which the rate of transconductance
change gm2 (=d*Ip/dVZs) is a maximum, and enhances
the exactness of the SPICE model by a adopting physically
meaningful one. The superiority of the transconductance
change method to others can be figured out if one considers its
underlying physical meaning. The inversion charge increases
exponentially with surface potential. Below threshold voltage,
the surface potential is almost linear with gate-to-source
voltage. Accordingly, the change in the inversion charge with
respect to gate-to-source voltage is almost exponential below
threshold. This change in the inversion charge is proportional to
the transconductance. On the other hand, beyond the threshold
voltage, the surface potential begins to stay almost constant
as the gate-to-source voltage increases, which induces a slow
down in the rate of increase of inversion charge with respect
to the gate-to-source voltage. It means a decrease in the rate
of transconductance increase, i.e., the transconductance versus
gate-to-source voltage curve goes through an inflection point
near the threshold voltage. The transconductance change
method detects this inflection point which is relatively insensi-
tive to device degradation because it is not extrapolated from
a region in which the drain current is large where the device is
sensitive to degradation [4].

Although this method has a great merit mentioned above,
there is a big obstacle to practical use: the second-order differen-
tiation. Since the second derivative of drain current with regard
to the gate-to-source voltage is required in the transconductance
change method, it tends to be very noisy [2], [9]. Therefore, it
is difficult to extract the exact threshold voltage as depicted in
Fig. 1(b).

In mathematical meaning, the problem can be interpreted as
follows. The threshold voltage extraction is viewed as an in-
verse process to get the input quantities from the output quanti-
ties of a sequence of measuring operations. We should make a
proper model to represent the measuring process and, addition-
ally, find the inverse representation of the measuring process to
extract the input quantities from the output data. These inverse
problems occur in many other fields and are being investigated
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Comparison of the d*1p /dVg profiles of a 1.5-um-long nMOSFET with 25-nm gate oxide measured at 0.1-V drain bias. (a) The transfer curve of the

1.5-pm-long nMOSFET which gives the numerical data for d2 I p / dVZg extraction. (b) d®Ip /dV 2 profiles extracted by the least square method. (c) d*Ip /dVg
profiles extracted by the five-point least-square-fit method. (d) d2 I p / dV 2 profiles extracted by the proposed regularization method. Because the regularized value
depends on the regularization parameter «, it is necessary to optimize the regularization parameter.

intensively [10]. Differentiation is the inverse operation of inte-
gration. The former is very sensitive to some perturbation of the
data distribution to be differentiated, which is so-called ill-con-
ditioned, while the latter is robust to that. So some perturbations
of the measured data lead to a heavy change of the differentiated
data. Generally, weak noise contamination of the original data
curve would result in a highly unstable and oscillatory shape
of the differentiated data curve. In the transconductance change
method, the unstable property of the second-order differentia-
tion makes it difficult to extract an exact threshold voltage since
the measured raw data are usually contaminated by noise.

In this paper, we propose a stable threshold voltage extrac-
tion by implementing stable numerical second-order differenti-
ation using the Tikhonov’s regularization technique [11]. Here,
“stable” means that small changes in the initial data should give
only correspondingly small changes in the final results.

II. NUMERICAL SECOND-ORDER DIFFERENTIATION USING THE
TIKHONOV’S REGULARIZATION TECHNIQUE

In mathematical sense, given a measured data set y with size
n, this problem is to find a good approximation Z to a vector x €
R™ satisfying an approximate linear equation Az ~ y, where
A~1 € R™*™ is the matrix representation of second-order dif-
ferentiation. Usually, y is the result of measurement contami-
nated by small errors such as noise. In such situations, the vector
& = A~ 1y, if it exists at all, is usually a meaningless, bad ap-
proximation to z. So the regularization technique is necessary
to obtain meaningful solution estimates for such ill-conditioned
problems, where some parameters are ill-determined by the con-
ventional least square method [12].

As stated previously, we concentrate on evaluating

g(V) = A, fi (1)
which represents the second-order differentiation problem in
threshold voltage extraction. A}’ ! is the second-order differenti-
ation operator and g(V') is the regularized differentiated data we
want to extract, V' represents an independent variable in mea-
surement, and fy is the raw data we have extracted in mea-
surement. In our case, g(V'), V, f\ are the g2 extracted by the
regularization method, the gate-to-source voltage, and the drain
current. Subscript A represents the discrepancy value which will
be discussed below. Instead of (1), we set the problem in the
sense of the least square method with the Tikhonov’s regular-
ization scheme as

od
Mg] = / Ang(V) — f? dV
d

to [ [umpr +yop]av @

where M|g] is the Tikhonov’s regularization functional and «
is the regularization parameter. The lower and upper bound of
the integral are represented by ¢ and d, respectively. In the right
side of (2), there are two integral terms. The former is conven-
tional root mean square (rms) term and the latter is the integral
of the first order differentiation. Our task is finding the g(V)
to minimize M [g]. This operation forces both the first and the
second integral to be minimized. The first term tries to minimize
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the rms error from the original data distribution but the second
term tries to reduce the fluctuation of the g(V") data distribution
and guarantees the smoothness of the data distribution. The reg-
ularization parameter o balances two integral terms of (2). So
the structure of ¢(V') to minimize M[g] is expected to have a
smooth and slowly oscillating form. As « approaches zero, we
can get similar results to those in the least square method i.e.,
small error but much noise. On the other hand, as « gets larger,
we can extract more regularized data i.e., large error but little
noise.

We use the variational principle to find optimal ¢g(V') which
makes M [g] minimal [10]. We project (1) on the discrete do-
main. Then it can be expressed as follows:

=3 [Ang(Vi) = A(V)Ph
=1

+a 3 [1BoOAHE +[CoV)P]h - 3)
=1

where V; denotes the ith measurement node and A}, is the matrix
representation of the inverse of the second-order differentiation
operator given by (4), shown at the bottom of the page, where h
is the sampling interval and ¢ is an arbitrarily small positive real
number to prevent the matrix A; being singular. The identity
matrix B and the matrix C' representing the first order differen-
tiation are, respectively, represented by

1835

In the variation theory, the minimum condition for M|g] is
given by

§M[g]
=3 [l4ka(Ve) + Anbg(Vi) = £ = 1 Ang(Vi) = £
+a2[|Bg )+ Bsg(V)l? - |Bg(Vi)P
+1Cg(Vi) + Cg(Vi)| = |Cg(Vi) | b = 0. )

By using the knowledge of the linear algebra, we can derive the
relations shown below

[Ang(Vi) + Andg(Vi) = Il = | Ang(Vi) = faf?

= {Ang(Vi) = 1T Anbg(Vi) + [{Ahg( Vi)

- At aagvi] ®)
[Bg(Vi) + Bsg(Va)|* = | By(Vi) T

= {(Bg(V)} Bog(vi) + [{Bg (v} Bsg(vi)] . 9

Cq(Vi) + Cog(Vi) P = |Cg(Vi)|?
~ (camrtesam) + [loaaytossi) . o

We use A for an adjoint matrix of A.
If we substitute (8), (9), and (10) to (7), it becomes

1 0 0 0
d
0 0 o b + a{Cg(V)YTCIg(V) + [[{Ang(V) — f} T
and Bg(V)H B+ af{cg(vV) Crsg(v)1T] av =o.
1 o 0o o +a{Bg(V)} B+ a{Cg(vV)} Clog(V)]]
0o -1 1 0 0 0 (11)
0 0 0 0 Let N = {Ang(V)— i}l dn+a{Bg(V)} Brafcg(v)iic,
= h ©)  then (7) is derived as
0 0 0 -1 1 0 .,
0 0 o --- 0 -1 1 _ T _
o 0 0 0 0 0 sMlg) = [ UNsgV)} + (NsgV ) lav =0, 2
I ~14e 1 0 0 0 0 0 0 0 \1°"
1 -2 1 0 0 0 0 0 0
0 1 -2 1 0 0 0 0 0
0 0 1 -2 1 0 0 0 0
1 1 =2
av= | LT ! @
0 0 0 0 0 -2 1 0 0
0 0 0 0 0 1 -2 1 0
0 0 0 0 0 0 1 =2 1
L 0 0 0 0 0 0 0 1 —14¢/.
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To meet the requirement of (12) for arbitrary 6¢g(V'), N should
be zero. Then g(V') can be expressed in the simple form

o) = (Al 4, +amiB+cloyafn. a3

The dimension of each matrix depends on the number of the
measurement data.

We measured the electrical characteristics of a 1.5-pum
nMOSFET and performed the second-order differentiation
with the MATLAB by modulating the regularization parameter
«. Fig. 1(a) shows the transfer curve of the 1.5-pm nMOSFET
in linear region. By using the data from Fig. 1(a), we per-
formed the second-order differentiation referring to (13). When
adopting the least square method, i.e., « is zero, we can get no
information due to much noise from numerical differentiation
as shown in Fig. 1(b). Even if we use a more advanced least
square method i.e., a five-point least-square-fit method, sig-
nificant noise still remains as shown in Fig. 1(c), [13]. On the
contrary, adopting the regularization method, i.e., « is not zero,
we can suppress the noise from differentiation as depicted in
Fig. 1(d). Thus, it is possible to extract some useful information
for MOSFET characterization. However, the regularized value
depends on the regularization parameter «, which is selected
arbitrarily by the user. If we set « to be small, the results
approach those of the least square method: much noise. On
the other hand, if we set « to be large, there will be significant
error in the regularized values. Therefore, it is indispensable
to have a criterion to determine the value of the optimized
regularization parameter.

To determine the regularization parameter, we adopt the gen-
eral discrepancy principle [9] and introduce a function “dis” de-
fined as

d
dis:/ |Ang — fr]>dV — 2. (14)
Je
The criterion for optimizing the regularization parameter is de-
fined as

dis(a™) = 0. (15)
where g, A, and o* are the regularized value which depends on
the regularization parameter, the discrepancy value and opti-
mized regularization parameter, respectively. The regularization
parameter satisfying (15) will be the optimized value. The dis-
crepancy value optimizes the regularization parameter and de-
termines the confidence of the regularized data distribution. If
one measures the same quantity infinite times, there will be an
averaged error A between true and measured values. Therefore,
(14) is considered as follows. Extracted raw data f encircle a
true value within a radius of A. Inversely, it means that a true
value exists within A from f. Contrary to the previous section,
the discrepancy value can be decided referring to the confidence
level that we want. In most cases, A can be determined con-
sidering the confidence of a measurement equipment. However,
even if the exact confidence of the equipment is not available,
there are no difficulties in extracting the threshold voltage. As
summarized in Table I, as long as the peak of g, is conserved,
the extracted threshold voltage is insensitive to the variation of

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 11, NOVEMBER 2004

TABLE 1
EXTRACTED THRESHOLD VOLTAGES WITH VARIATION OF A. THE THRESHOLD
VOLTAGES ARE INSENSITIVE TO THE CHANGES IN THE VALUE OF A

A (A%V) Extracted threshold voltage (V)
5x107* 0.61
1x107* 0.61
5x107 0.61
1x10°° 0.61
5x107° 0.61

A. In other words, the peak position is fixed and only the overall
profiles are moved with A varied.

III. APPLICATION TO STABLE THRESHOLD
VOLTAGE EXTRACTION

To implement the aforementioned idea, we apply it to
threshold voltage extraction based on the transconductance
change method. We fabricated and simulated MOSFETs with
various channel lengths to extract threshold voltage. The
MEDICI is utilized as a device simulator. And their transfer
characteristics were carefully fitted to each other. All of the
data used in this paper is from simulation that was corrected
by experimental data. We set the discrepancy value A to be
5 x 1077 A2V, taking into consideration the confidence we
want. The sampling interval & is set to be 0.01 V.

Fig. 2 shows the regularized g¢,,» profiles of MOSFETSs
with various channel lengths. It shows mathematically exact
results of the second-order differentiation with smooth-
ness. To confirm the proposed method, we compared
Vru(TC), Vo (LE), andVrg(NMID)  with Vpg(P) in a
variety of devices. Vru(TC), Vru(LE), and Vrg(NMID) rep-
resent the threshold voltage extracted by the transconductance
change method, the linear extraction method and the normal-
ized mutual integral difference method [6]. Vg (P) represents
the physically meaningful threshold voltage at which the sur-
face potential ¢ is 2¢; + Vsp. Vru(LE) and Vg (NMID)
are selected because they are a de facto industry standard and
a state-of-the-art method, respectively. In long-channel MOS-
FETSs whose channel length ranges from 1 to 2 um, Vg (TC)
and Vg (NMID) predict Vg (P) more exactly than Vrg(LE)
as shown in Fig. 3(a). It is observed that Vry(TC) is larger
than Vrg(NMID) about twice the thermal voltage, which is
the same result in [6]. The same is the case in short-channel
MOSFETs whose channel length ranges from 60 to 100 nm,
as depicted in Fig. 3(b). However, it is found that Vg (TC) is
almost the same as Vrg(NMID) in the short-channel region.
This can be understood as follows. The transconductance

Authorized licensed use limited to: Korea University. Downloaded on February 11,2022 at 05:39:28 UTC from IEEE Xplore. Restrictions apply.



CHOI et al.: STABLE THRESHOLD VOLTAGE EXTRACTION USING TIKHONOV’S REGULARIZATION THEORY

16
14l —— 1.0um nMOSFET
12l ——— 1.5um nMOSFET

= 2.0pm nMOSFET

£

3

o~

2 10

: s

Yo 6f

>0

T 4

-8 2r

o~ \\
0L N~ P

\},L,———S‘
-2 . A .
0.0 0.5 1.0 1.5 2.0
Ves (V)

1837

—— 60nm nMOSFET
4} ——- 70nm nMOSFET
80nm nMOSFET
90nm nMOSFET

100nm nMOSFET

%1,/dV s (MANV um)

02 03 04 05
Ves (V)

(b)

0.6

Fig. 2. Regularized d*Ip /dV§g profiles of MOSFETs with various channel lengths. By using the general discrepancy principle, it is possible to determine the
regularization parameter objectively. We set the discrepancy value A to be 5 x 10~7 A2V. (a) Long-channel MOSFET cases. (b) Short-channel MOSFET cases.
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Comparison of each threshold voltage of MOSFETS with various channel lengths. (a) Long-channel MOSFET cases. Viry (T'C) and Vi (NMID) shows

better correlation with Vi (P) than with Vi (LE). (b) Short-channel MOSFET cases. Ve (TC) and Vg (NMID) shows better correlation to Virg (P) than

Vru(LE).

change and normalized mutual integral difference method have
a similar meaning. The former extracts the threshold voltage
by monitoring the change in inversion charges while the latter
does by detecting the transition of the transfer curve from ex-
ponential to linear. To sum up, both of them interpret the same
phenomenon in either physically oriented or mathematically
oriented viewpoint.

To make it clear, we introduced a statistical methodology.
Correlation coefficients are calculated from the pairs of the
threshold voltages. The correlation coefficient 12, for quantity
z and y is defined as

cov(z, )

R, = (16)

O30y

where cov(z,y), 0., and o, are the covariance and the standard
deviations for quantity z and y, respectively. In Table II, cor-
relation coefficients between Vry(P) and Vrg(TC) are larger
than those between Vry(P) and Vry(LE) regardless of the
gate length, which shows better correlation between Vg (P)
and Vg (TC). This result is easy to understand when we recall
the physical meaning of the transconductance change method
as mentioned before. It is also observed that Vg (NMID) has a
close correlation with Vg (TC).

TABLE 1II
CORRELATION COEFFICIENTS CALCULATED FROM THE PAIRS OF THE
THRESHOLD VOLTAGES. Vg (P) AND Vg (TC) SHOW VERY CLOSE
CORRELATION WITHOUT REGARD TO CHANNEL LENGTHS

Long channel MOSFETS | gpot channel MOSFETs
(1~2 um) (60~100 nm)
Correlation coefficient between
0.958 0.995
Vru(P) and Vip(TC)
Correlation coefficient between
0.884 0.931
Vr(P) and Vig(LE)
Correlation coefficient between
0.958 0.981
Vin(P) and Vi (NMID)
Correlation coefficient between
1 0.985
Vr(TC) and Vy(NMID)

IV. CONCLUSION

We proposed a stable threshold voltage extraction using
the Tikhonov’s regularization theory. It was based on the
transconductance change method. To remove arbitrariness in
the regularization parameter selection, we adopted the general
discrepancy principle. Based on the mathematical derivation,
we converted the procedure into the MATLAB programming,
which made the proposed method much easier to be used. It
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guaranteed smooth differentiated values within the discrepancy
value \. Applying it to threshold voltage extraction, we found
that Vpg(TC) could be extracted with stability and simple
procedure. Vry(TC) showed a close correlation to Vg (P)
and Vg (NMID). Therefore, it can provide us with a powerful
analysis tool for device modeling and characterization.
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