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Generally, uniformity can be improved at the cost of a low diffraction efficiency in the design of diffractive optical elements
by the conventional iterative Fourier transform algorithm. This trade-off is a fundamental limitation of the conventional
iterative Fourier transform algorithm. However in this letter, a novel iterative Fourier transform algorithm with adaptive
regularization parameter distribution for alleviating the trade-off between uniformity and diffraction efficiency and for
improving uniformity is devised on the basis of the theoretical analysis of the trade-off property in the conventional iterative
Fourier transform algorithm scheme. The validity of the proposed algorithm is proved by numerical experiments.
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A diffractive optical element (DOE) is a device that can
form a specific diffraction image on an image plane. The
optimal design of a DOE is realized by solving the phase
retrieval problem, which is an inverse problem of construct-
ing the phase profile of the DOE from the knowledge of the
object diffraction image on the image plane and the incident
beam profile on the DOE plane. In the scalar and paraxial
domains, many efficient methods for obtaining quasi-optimal
solutions to the phase retrieval problem have been inves-
tigated.'”” The most preferred algorithms among them are
the iterative Fourier transform algorithm (IFTA) and its
modified forms. It is noteworthy that the formulation of
IFTA by Kotlyar er al. is a refined generalization of the
IFTA, which can cover almost all historic variants of IFTA
and include key concepts of IFTA as parameterization by the
use of a relaxation parameter to control the convergence
rate, the excess degree of freedom of exploiting amplitude
and phase freedom, and regularization.l) In ref. 1, the
generating functional of IFTA and the derivation of IFTA
based on the variational method are described. The con-
vergence of IFTA is discussed in ref. 2.

The evaluation features of the solution, that is, the phase
profile of the DOE, are mean square error (MSE), diffraction
efficiency (DE), the uniformity of the diffraction intensity
distribution, and signal-to-noise ratio (SNR). Particularly,
the uniformity of the diffraction intensity distribution
indicates the flatness of the signal distribution in the image
plane and is defined as

Uniformity = (|F|max - |F|min)/(|F|max + |F|min)’ (D

where F denotes the diffraction signal. The theoretical
investigation of the relationship between several evaluation
features and the convergence characteristics of IFTA is
mathematicaly difficult because of its inherent nonlineaity,
that is, the hard clip operation in the DOE plane that abruptly
replaces the amplitude of the complex signal with that of the
pregiven incident signal profile. Therefore, several charac-
teristics of IFTA are known only empirically. Many variants
of IFTA have been developed huristically.®”

One of the common understandings of IFTA is the trade-
off between uniformity and diffraction efficiency. Generally,
uniformity can be improved at the cost of a low diffraction
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efficiency in the design of DOEs by methods such as IFTA.
This trade-off is a fundamental limitation of IFTA. The
theoretical study on the trade-off is presumed to be an
important issue in the design of DOEs. Furthermore, to
alleviate the trade-off between uniformity and diffraction
efficiency is a target of theoretical study on IFTA. However,
the reason for the existence of such a trade-off has not been
substantiated and furthermore an appropriate method to
alleviate the trade-off has not yet materialized.

In this letter, a novel method of alleviating the trade-off is
investigated through the theoretical analysis of the trade-off
between the uniformity and diffraction efficiency of the
conventional IFTA scheme. According to the proposed
novel IFTA scheme, the trade-off is lightened, which can
improve uniformity particularly. The validity of the pro-
posed method will be proved by numerical experiments.

Initially, we construct a generating functional of the
classical IFTA as

E(F) = / / |Dg|F| — Fol*dxdy + o / f |F|*dxdy, (2)
—00 S

where Dy is the area-limiting operator defined as

DB|F|:{|F| (x,y)es ’ 3)
0 y¢s

where F is the calculated complex light signal, Fy is the
objective positive real signal amplitude, and S is the signal
area.’ The minimization of the generating functional eq. (2)
leads to the acquisition of the phase profile of the DOE,
forming the complex light signal F, that is, the diffraction
image in the image plane. However the minimization of the
second term of eq. (2) induces a decrease in diffraction
efficiency. Later, it will be clarified that the second integral
of eq. (2) plays a role in balancing the trade-off between the
uniformity and diffraction efficiency of the diffraction image
through the regularization parameter «. An iterative algo-
rithm can be derived to minimize the functional eq. (2) by a
variational method, the Landweber iteration method. The
variation of the functional eq. (2) is given by
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SE(F) = E(F + 8F) — E(F)

P / / Re[—(|Fo| exp(iy) @)

+ DBF + DB(XF)SF*]d)Cdy,

where Rel[-] is the real part of the complex number. The
variation of F is determined to generate the maximum
negative variation of §E, then §F takes the form

SF=F—F
= —A[Dg(1 + a)F — Fyexp(ji)l,

where A is the relaxation parameter and i is the phase
distribution of F. Hence the nth iterate modified in the image
plane takes the form

Fy, = F, — A[Dp(1 + &)F, — Fy exp(jy,)]- 6)

(&)

Then the (n 4 1)th light signal F,;, is obtained by applying
the error-reduction operator to eq. (6) as

Foi1 = FrDAFr~'(F,), (7)

where operator D expresses the surface boundary condition
in the DOE plane as

Apexpljarg(G)]  (u,v) € Q

0 w,v)¢ Q° ®)

paG = |
where Q2 denotes the encoding area in the DOE plane, arg(G)
is the phase function of the complex function G, and Fr
denotes the Fresnel transform. Equation (7) causes the signal
F,, fulfill the constraints in the DOE plane. Equations (6)
and (7) describe the IFTA for the design of a DOE and eq.
(6) can be rewritten as

5 {AFO exp(jy,) + (1 — 1 — Aa)F, (x,y) €S
"R, Ly ¢S

The phase profile of the DOE can be obtained as the phase
term of

©))

Gny1 = DAFr'(F)). (10)

Next, the objective functional eq. (2) can be rearranged with
a little manipulation as

E(F) = (o + 1)//[|F| 0 ]zdxd
— (« _
: (a+1 Y

+ /szdxd
@+ 1)) ) o
S

The newly arranged functional eq. (11) is the sum of two
terms. The first term is considered as the MSE of the signal
distribution F with respect to the objective signal scaled by
(o + 1)~". The second term indicates the total energy of the
incident optical wave multiplied by a constant a(a 4 1)~
We observe that the weight factor of the first integral is
(o + 1). Therefore as « increases, the weight factor of MSE
(between the signal distribution and the scaled objective
signal function) increases and IFTA will make an attempt to
further minimize the first term. The minimization of this
MSE will lead to an improvement in the uniformity of the
signal distribution in the signal area since the even
distribution of the signal will further decrease the MSE.
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However, as stated previously, the increase in the regulari-
zation parameter induces the decrease in diffraction effi-
ciency.

It is noted that the minimization of only MSE does not
guarantee the best uniformity of the diffraction signal since
functional structures of MSE and uniformity are correlated
weakly and their mathematical properties are so different.
There exists a possibility that the MSE of the case, in which
all the samples of F' except one sample match the target
values exactly and the excluded sample has a relatively big
mismatch from the target value, can be smaller than that of
the case in which all the samples of F have a relatively small
mismatch from the corresponding target values. But the
uniformity of the former case is worse than that of the latter
case. On the other hand, it is definite that the optimization of
only the uniformity will not confirm the reduction in the
MSE value. That is, uniformity and MSE are only weakly
correlated in the conventional IFTA scheme with a constant
regularization parameter. Also, there is a trade-off between
uniformity and diffraction efficiency as stated previously.

However, we contemplated a method of strongly correlat-
ing uniformity with MSE and worked out a method of
alleviating the trade-off between the uniformity and dif-
fraction efficiency of IFTA. We consider the regularization
parameter as a distribution «(x,y) not a constant value.
Therefore the generating functional eq. (11) is modified to
the form

E(F)—//( +1)[|F|— Fo ded
= / o @+ y

+f/ Y Fdxd
@+ 1) 07
S

Let us define the distribution of the regularization parameter
ao(x,y) as

12)

_ 2)/ -1 |F(x’y)| —F()(X,y)
alx,y) = - tan Foty)

where y is a tuning parameter. The form of eq. (13) is
devised for a(x,y) to satisfy the inequality condition

>+V—1 13)

ax,y)+1>0 (14)

which is a necessary condition to obtain a correct least-
squares formulation as noted in eq. (12). The regularization
parameter distribution «(x,y) is dependent on |F(x,y)| —
Fo(x,y) and influences the integrand of the first integral in
eq. (12). When the value of ||F(x',y")| — Fo(xX', )] at a point
(x,y’) increases, the term of the integrand of the first integral
{IF(& )| = Fox,y)/la(x',y) + 11}* in eq. (12) becomes
larger, irrespective of the sign of the value of «. Since the
term {|F(x',y")| — Fo(x',y)/[a(x’,y") + 1]} increases faster
than [a(x', y") + 1] decreases or increases for the variation of
a(x’,y), the integrand of eq. (12) [a(xX,y") + 1{|F(X,y")| —
Fo(x',y)/la(x',y") + 11}* always increases as the value of
[|IF(X',y)| — Fo(x',y")| increases. Therefore the weighting
assigned to a certain point (x’,y’) in the evaluation of MSE,
the integrand of the first integral of eq. (12), is magnified at
the rate proportional to the value of ||F(x',y")| — Fo(x',y")]-
The distribution of the value of ||F(X,y")| — Fo(x',y)]
indicates the uniformity of the diffraction image in the
image plane. Implicitly, uniformity and MSE are correlated
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strongly through the distribution of the regularization
parameter (13). We call eq. (13) the adaptive regularization
parameter distribution (ARPD). The trade-off between
diffraction efficiency and uniformity is balanced through
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the tuning parameter y in the proposed scheme (egs. (12) and

(13)).
The ARPD is applied in the manipulation of eq. (9) by

substituting eq. (13) into eq. (9) as

2
- AFyexp(jy,) + (1 —A— ﬂ(—y tan_l[
F, = T

Fy

In the proposed IFTA scheme, an appropriate relaxation
parameter A and a tuning parameter y are determined
experimentally.

To compare the performace of the proposed and the
conventional IFTA schemes, the phase profiles of the DOEs
and the diffraction images are obtained by the conventional
and the proposed IFTAs for several values of regularization
parameter o and tuning parameter y, respectively. The
object diffraction image is selected as a rectangular image
and the radius of DOE is taken as 0.5 mm. The size of the
computation grid is 64 x 64 and the regularization param-
eter A is taken as 1. The values of uniformity for the
conventional and the proposed IFTAs are compared with the
same diffraction efficiency in the range from 77% to 92% in
Fig. 1. The diffraction efficiency can be controlled by
varying regularization parameter « for the conventional
IFTA scheme and tuning parameter y for the proposed IFTA
scheme. The result in Fig. 1 shows that the uniformity of the
proposed IFTA is superior to that of the conventional IFTA
with the same diffraction efficiency in all ranges. Partic-
ularly, Figs. 2(a) and 3(a) show, respectively, the intensity
distribution of the diffraction image obtained by the
conventional IFTA and that by the proposed IFTA, which
have almost the same diffraction efficiency of approximately
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Fig. 1. Comparison of the performance of the conventional and the
proposed IFTAs with respect to the trade-off between diffraction
efficiency and uniformity. The number of iterations was 100 times for
both the conventional and proposed IFTAs.

(a) Intensity distribution of the diffraction image generated by the DOE with (b) the phase profile obtained using the
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evident that the diffraction image of the proposed IFTA has
a better uniformity than that of the conventional IFTA. The
former has a uniformity of 0.0365 and the latter has a
uniformity of 0.0746. Therefore it is proved that the ARPD
alleviates the trade-off between uniformity and diffraction
efficiency and the proposed IFTA with APRD improves
uniformity markedly, compared with the conventional IFTA.
In conclusion, in this letter, a novel IFTA scheme with
ARPD was proposed. It was confirmed theoretically and
experimentally that the proposed IFTA has better perform-
ance than that of the conventional IFTA. The DOE designed
by the proposed IFTA scheme was proven to form a
diffraction image with a better uniformity at the same
diffraction efficiency than the conventional IFTA scheme.
The authors acknowledge the support of the Ministry of
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(a) Intensity distribution of the diffraction image generated by the DOE with (b) the phase profile obtained using the proposed
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